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1 Introduction

Bounds on the heat transport in the Rayleigh-Bénard convection problem is a fundamental
problem. The Þrst mathematical formulation of the problem was given in the pioneer paper
by Howard[1]. The problem was formulated as an optimization problem. The motivation
was that nature might �choose� to realize a process that maximizes the heat transport
when the ßow is turbulent. This is only a hypothesis, but in certain cases the features
of the solution to the so formulated problem has qualitative agreement with real physical
ßows. In any case, the solution of the maximization problem gives a bound on the quantity
of transport of heat ßux.

The problem of thermal convection can be realized in different experimental settings. In
some, the boundaries can have inÞnitely bigger thermal conductivity that the ßuid in the
layer. This is the so called �Þxed temperature� problem. In other experimental settings we
might have the opposite case: The ßuid�s thermal conductivity might be much larger than
the thermal conductivity of the boundaries; the latter is �Þxed heat ßux� problem. The
physical basis for this nomination is that in the former case the ßuid on the boundary has
the temperature of the boundary, whereas in the latter, this is not required. Instead, the
heat ßux through the boundary, which is proportional to the gradient of the temperature
on the boundary, is Þxed. In this study we are concerned with the Þxed heat ßux problem.

Despite the different boundary conditions arising from different experimental settings,
the physics behind both phenomena is similar. When the temperature difference between
the upper and lower plates (or analogously, the temperature gradient) is small, the ßuid
is in a pure conductive state so that the velocity throughout the layer is zero. As we
start increasing the temperature difference (or the heat ßux), the system becomes unstable
and the ßuid starts to move. There is a critical parameter that describes when this Þrst
happens�a control parameter. This is the Rayleigh number. As we keep increasing the
Rayleigh number, the ßuid sets into turbulent motion.

In turbulent regime it is believed that quantities reach asymptotic behavior and have
certain scaling determined by the Rayleigh number. For example, the quantity that de-
scribes how much bigger the heat ßux in a turbulent regime is, compared to that in a
pure conductive state, is the Nusselt number Nu. In the Þxed temperature problem the
scaling derived in the paper by Howard[1]� maximizing over Þelds with one horizontal

wavenumber�is Nu ∼ Ra 38 , while the scaling derived by Busse[5]�maximizing over mul-
tiple horizontal wavenumbers�is Nu ∼ Ra 12 . In a recent paper by Otero et al. [3], using a
different method, it is shown that the scaling for the Þxed heat ßux problem is Nu ∼ Ra 12 .
However, for a single horizontal wave number C. Doering and J. Otero[4], following a method

by Howard[2], have derived an estimate that leads to a scaling Nu ∼ Ra
5
12 . We will try

to follow the Howard-Busse approach and derive a scaling for the Nusselt number in the
Þxed heat ßux problem, using a single wave number approximation. We will comment on
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applying the multi-alpha approach developed by Busse[5].

2 Formulation of the Problem

We describe the physical setup in this section and then formulate the problem. Consider
a ßuid between two horizontal inÞnite plates. The lower plate is heated so the ßuid at
the bottom is hotter than the ßuid at the top. There are two opposing forces that act on
the ßuid�the buoyancy force and the gravity. The equations that describe this convection
problem are the Boussinesq equations

∂u

∂t
+ u ·∇u+ 1ρ∇p− αgT �k = ν∇2u, (1)

∇ · u = 0, (2)

∂T ∗

∂t
+ u ·∇T ∗ = κ∇2T ∗. (3)

The meaning of the quantities in the above equations is the following. u = (u, v, w) is
the velocity vector, p is the deviation of the pressure from the hydrostatic pressure, cor-
responding to the horizontal average of the temperature, α is the coefficient of thermal
expansion, g is the acceleration of gravity, T ∗ is the temperature, κ is the thermal con-
ductivity of the ßuid. The ßuid occupies the space in the direction of z from 0 to d. The
boundary conditions are

u(0) = u(d) = 0, κ
∂T ∗

∂z

!!!!
0

= κ
∂T ∗

∂z

!!!!
d

= −κβ = const. (4)

We split the temperature in a horizontal averaged part T ∗, and a deviating part T , so
that

T ∗ = T ∗ + T. (5)

Our notation is: An over-bar denotes horizontal average, and angle brackets�volume
average. Then we can write

$wT % = 1

d

" d

0
wT dz. (6)

If we multiply Eq. (1) by u and average over the volume, we get
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αg $wT % = ν #|∇u|2$ . (7)

This equation expresses the balance between the rate of generation of energy motion in
the Þeld of the buoyancy force αgTk, and the rate of dissipation of energy by viscosity. If
we average Eq. (3) horizontally, using the boundary conditions for u and T ∗, we obtain

dwT ∗

dz
= κ

d2T ∗

dz2
. (8)

Since w = 0, wT ∗ = wT . From Eq. (8) we see that

d

dz

%
wT − κdT

∗

dz

&
= 0 (9)

and therefore the sum in the braces in Eq. (9) is constant equal to the its average over
the volume

wT − κdT
∗

dz
= $wT % − κ1

d

" d

0
κ
dT ∗

dz

= $wT %+ κ∆T
d
, (10)

where by deÞnition

−∆T = T ∗(d)− T ∗(0). (11)

Finally from (10) we obtain

−κdT
∗

dz
= κ

∆T

d
+ $wT % − wT. (12)

Multiplying Eq. (3) by T , averaging and using (12) we obtain

κ−1
'
$wT %2 −

(
wT

2
)*
+
∆T

d
$wT % = κ #|∇T |2$ . (13)

Putting (7) and (13) into a dimensionless form with d as a length scale, κ/d as velocity
scale, and βd as a temperature scale have the two �power integrals� (called so in the paper
by Howard[1])

R $wT % = #|∇v|2$ , (14)
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∆T $wT %+ $wT %2 − #wT$ = #|∇T |2$ , (15)

where R = αgβd4/κν is the Rayleigh number based on the given constant heat ßux
at the boundary. Its relation to the Rayleigh number based on the temperature difference
between the plates is

Ra = R∆T. (16)

DeÞne the Nusselt number as the ratio of the total heat ßux and the conductive heat
ßux through the layer. The total heat ßux is given by −κβ, whereas the conductive heat
ßux by −κ∆T . In dimensionless form we have

Nu =
1

∆T
, (17)

where now ∆T is dimensionless temperature difference. The problem we will try to solve
is to Þnd a bound on the Nusslet number (17) i.e., we will try to Þnd a relation between
Nu and the Rayleigh number R (or, Ra.) of the form Nu ∼ R p for some p. We do this in
the following sections.

3 Bounding as a Minimization Problem

Multiplying Eq.(8) by z, integrating by parts and using the boundary conditions for T we
obtain for the left-hand and the right-hand sides

κ

" d

0
z
d2T ∗

dz2
dz = −κdβ + κ∆T," d

0
z
dwT ∗

dz
dz = −d $wT %

and after putting those in a dimensionless form we have

∆T = 1− $wT % . (18)

Using (18), we rewrite the power integrals (14) and (15) in the form

R $wT % = #|∇v|2$ , (19)

$wT % −
(
wT

2
)
=
#|∇T |2$ . (20)
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Using (19) in the right-hand side of (21) by $wT % and regrouping we get

$wT % = $wT %2 − 1
R

#|∇v|2$ #|∇T |2$(
wT

2
) (21)

Substituting (21) into (17) and using (18) we can write

1

N
=

(
wT

2
)
− $wT %2 + 1

R

#|∇u|2$ #|∇T |2$(
wT

2
) (22)

Maximizing the Nusselt number is equivalent to minimizing (22). The maximal NuWill
provide a bound on the total heat transport throughout the layer of ßuid. Therefore, we
will look for a minimum of the functional

F [v, T ] =
(
wT

2
)
− $wT %2 + λ #|∇u|2$ #|∇T |2$(

wT
2
) , (23)

where λ = 1/R.
The so derived functional is to be minimized among functions that satisfy the boundary

conditions

v(0) = v(1) = dT/dz|z=0 = dT/dz|z=1 = 0, (24)

the continuity equation

∇ · v = 0, (25)

and the power integrals (19) and (20).
We continue the analysis in the following section by making a certain simpliÞcation. We

will assume a single wave number horizontal dependence of the test functions.

4 Bound with a Single Wave Number

We assume the following form of the functions w and T

w(x, y, z) = ω(z)φ(x, y)

T (x, y, z) = θ(z)φ(x, y)

and the function φ(x, y) having the properties
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%
∂2

∂x2
+
∂2

∂y2

&
φ(x, y) = −a2φ(x, y), φ2 = 1. (26)

Now we can write

#|∇T |2$ = #θ#2 + a2θ2$ (27)

We note that the continuity equation alone is not enough to determine the relation
between ω and

#|∇v|2$, but if only the minimum of the latter is requested, we can write

#|∇v|2$ = #a−2ω##2 + 2ω#2 + a2ω2$ . (28)

With (27) and (28) we can express the functional (23) in terms of only ω and θ only

F [ω, θ] =
#
ω2θ2

$− $ωθ%2 + λ #θ#2 + a2θ2$ #a−2ω##2 + 2ω#2 + a2ω2$
$ω2θ2% . (29)

The boundary conditions for the functions ω and θ are

ω = ω# = θ# = 0 at z = 0, 1. (30)

Since the functional (29) is homogeneous of degree zero in ω and θ, we can choose the
amplitudes of the test functions so that they satisfy two conditions

$ωθ% = 1,#
ω2
$
=
#
θ2
$
. (31)

The Euler-Lagrange equations following from the functional (29) are

Eq1ωθ2 (1− F)− $ωθ% θ + λ #θ#2 + a2θ2$ +a−2ωiv + 2ω## + a2ω, = 0 (32)

Eq2ω2θ (1− F)− $ωθ%ω + λ +−θ## + a2θ, #a−2ω##2 + 2ω#2 + a2ω#2$ = 0 (33)

Since these equations are difficult to solve analytically, we resort to numerical methods
to solve them. The results are given in the next section.

In the rest of this section we apply the boundary layer approximation. It consists of the
following. The form of the functional (29) suggests that the minimizing functions should
be nearly constant throughout a large portion of the interval [0, 1]. To satisfy the boundary
conditions, ω will need to drop to zero together with its derivative, and so will the derivative
of θ. Therefore we expect that there will be a narrow interval around the two boundaries
where the derivatives of the functions will have large values�boundary layers. The values
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of the functions will change fast within these boundary layers and the thickness of the
latter will determine the magnitude of their growth. The contributions to the integrals
are expected to come predominantly from the boundary layers. Therefore, we will derive
equations that describe the functions ω, θ only in the boundary layer�the boundary layer
equations�and will approximate the full interval of integration by integration over the thin
boundary layers (there are two of them.)

Note that the Þrst two terms in (29) are of order one, see (31). To minimize the functional
and comply with (31), both of them will approach the value of 1 so that their difference
approaches zero. The two tendencies�the terms with the derivatives approaching zero and
the difference between the Þrst two terms approaching zero�must occur simultaneously
and have the same order of magnitude. In mathematical form, the above reasoning can be
formulated as follows. Assume the following scaling of the boundary layer thickness (as a
small parameter we choose λ = 1/R)

ω = λpω1, θ = λ−pθ1, z = λrζ, a2 = λ−qb2, (34)

where the functions ω1, θ1 are of order one inside the boundary layers. From the argument
above

rel
#
ω2θ2

$→ 1 as λ→ 0. (35)

Because of the relation
#
ω2θ2

$
=
(
(1 + (1− ωθ))2

)
we see that as ωθ → 1 we must have

(35). Substitution of (34) into (29), and taking into account (35), we obtain

FFF = 2λr
" ∞

0
(1− ω1θ1)2dζ + λ

-
2λ−2p−r

" ∞

0

%
dθ1
dζ

&2
dζ + b2λ−q

.

×
-
2b−2λq+2p−3r

" ∞

0

%
d2ω1
dζ2

&2
dζ + 4λ2p−r

" ∞

0

%
dω1
dζ

&2
dζ + b2λ−q

.
. (36)

After expansion of the terms in the square brackets we obtain the following exponents

r, 1 + q − 4r, 1− 2r, 1− 2p− r − q, 1 + 2p− 3r, 1− q + 2p− r, 1− 2q. (37)

We need to maximize the minimal possible exponent among (37). Let e be the minimal of
all exponents. Of all 7 inequalities, consider

r ≥ e, (38)

1 + q − 4r ≥ e, (39)

1− 2q ≥ e. (40)

Multiplying (38) by 8, (39) by 2, and adding to (40) we get 3 ≥ 11 from which we deduce
that e = 3/11. By adding 4 times (38) to (39), and using (40) we get 4/11 = 5e − 1 ≤
q ≤ 1/2(1− e) = 4/11, so that q = 4/11. Similarly, from (38) and (39) we get 3/11 = e ≤
r ≤ 1/4(1 + q − e) = 3/11, and thus q = 3/11. From the fourth and Þfth of (37) we Þnd
1/11 = e − 1 + 3r ≤ 2p ≤ 1 − r − q − e = 1/11 which shows that p = 1/22. For these
values of p, q, r all exponents in (37) take the same maximal value of 3/11 except the third
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and sixth, which become 5/11 (we neglect those.) Hence the maximum value is uniquely

determined. If we set F = λ 3
11F1, we obtain within the boundary layer approximation

F1 = 2
" ∞

0
(1− ω1θ1)2dζ +

-
2

" ∞

0

%
dθ1
dζ

&2
dζ + b2

. -
2b−2

" ∞

0

%
d2ω1
dζ2

&2
dζ + b2

.
. (41)

We need to minimize F1 among functions ω1 and θ1 that satisfy the boundary conditions
ω1(0) = ω

#(0) = θ#(0) = 0,
θ1 → 0, ω1θ1 → as ζ →∞.

Varying F1 with respect to ω1, θ1 , and b2 we Þnd the following equations

b−2
/
2

" ∞

0
θ21dζ + b

2

0
d4ω1
dζ4

− (1− ω1θ1)θ1 = 0, (42)/
2b−2

" ∞

0
ω##2dζ + b2

0
d2θ1
dζ2

+ (1− ω1θ1)ω1 = 0, (43)

2

b2

" ∞

0
ω##2dζ + b2 +

/
2

" ∞

0
θ#1
2dζ + b2

0 /
−2b−4

" ∞

0
ω##2dζ + 1

0
= 0. (44)

From (42) and (43) we obtain

b−2
/
2

" ∞

0
θ#1
2dζ + b2

0 " ∞

0
ω##2dζ =

" ∞

0
(1− ω1θ1)ω1θ1dζ =

=

/
2b−2

" ∞

0
ω##2dζ + b2

0 " ∞

0
θ#1
2dζ

and therefore " ∞

0
ω##2dζ = b2

" ∞

0
θ#1
2dζ ≡ b2µ

a which deÞnes µ. Substituting these into (44) we Þnd

2µ+ b2 + (2µ+ b2)(−2µb−2 + 1) ≡ 2(2µ+ b2)(1− µb−2) = 0 (45)

which shows that µ = b2. Using this in (42) and (43) we Þnd

3(d4ω1/dζ
4)− (1− ω1θ1) θ1 = 0, (46)

3b2(d2θ1/dζ
2) + (1− ω1θ1)ω1 = 0. (47)

Setting

ω1 = (3b
4)

1
6Ω, θ1 = (3b

4)−
1
6Θ, ζ = (3b)

1
3 ξ, (48)

equations(46) and (47) become

d4Ω/dξ4 − (1− ΩΘ)Θ = 0, (49)

d2Θ/dξ2 + (1− ΩΘ)Ω = 0. (50)
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These equations have boundary conditions Ω(0) = Ω#(0) = Θ#(0) = 0, Θ→ 0 and ΩΘ → 1
as ξ → ∞. The functions Ω and Θ can be determined independently of knowing b. Once
we know the solutions of (49), (50), we can determine b

relation b2 = µ =

" ∞

0
θ#1
2dζ = (3b4)−

1
3 (3b)−

1
3

" ∞

0

%
dΘ

dξ

&2
dξ

from which

b
11
3 = 3−

2
3

" ∞

0

%
dΘ

dξ

&2
dξ (51)

We can see from (49) and (50) that" ∞

0
Ω##2dξ =

" ∞

0
Θ#2dξ. (52)

Using the renormalization (eq:renorm) and the relation (51) in the functional (23) we Þnd
for the minimal value of F1

F1 = 33b4. (53)

herefore, the minimal value of the functional (??) becomes F = 33b4λ 3
11 or

F = 33b4R− 3
11 . (54)

We note that the equations (1) and (2) follow from the following functional

J =
1

6

" ∞

0

1
Θ#2 + Ω##2 + (1− ΩΘ)22 dξ. (55)

Relations between different quantities are given below

Nu = (33b4)−1R
3
11 = (33b4)−

11
8 Ra

3
8 , (56)

R = (33b4)−
11
8 Ra

11
8 , (57)

a = bR
2
11 = (

Ra

33
)
1
4 , (58)

z = (3b)
1
3R−

3
11 , (59)

ω(z) = (33b4)
1
6R−

1
22 ,Ω (60)

θ(z) = (33b4)−
1
6R

1
22Θ. (61)

As seen from (56), from the boundary layer theory we have the scaling Nu ∼ Ra 38 , the same
as in the Þxed temperature problem. To further test this scaling, we do some numerical
computations. The results are given in the next section.
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Figure 1: Velocity and temperature deviation: Fixed ßux. R = 107, a = 8.5456.

5 Numerical Results and Discussion

In the previous section we used asymptotic methods to derive a particular scaling of the
Nusselt number in the limit of large R. In this section we solve the complete equations (46),
(47)(the single alpha approximation) for Þnite R. We will try to verify as much as we can
the asymptotic theory�s prediction of the 3/8 scaling.

First, in Figure 1 we present the plots of the velocity and the temperature proÞles for
R = 107. The minimizing wave number has value a = 8.5456. For comparison, we give the
similar plot for the Þxed temperature problem in Fig. 2. We note the following difference.

In the rising and falling parts of the velocity proÞle there is a slight bend which is absent
in the analogous plot for the velocity proÞle for Þxed temperature. Our investigation showed
that this reßects the different boundary conditions of the Þxed heat ßux problem (to see
that, we solved the the Euler-Lagrange equations (46), (47) with zero boundary condition
for the temperature deviation θ; also, we solved the equations for the Þxed temperature
problem with boundary condition θ# = 0 and we observed the bend appear.) As we increase
the Rayleigh number R, this bend becomes more and more pronounced: In Fig. 3 we
present a plot of the velocity for R = 109.

The difference between the Þxed heat ßux and the Þxed temperature problems is also
shown in Fig. 4which is compared with its Þxed temperature analogue shown in Fig. 5.

In Fig. 6 we show the product of ω and θ and, again, compare that with its Þxed
temperature analogue in Fig. 7. The two curves have very similar behavior.

Next we show our results for the dependence of the Nusselt number on R on a log�log
plot, Fig. 8.

Our data (pluses) is compared to the data points (dotted line) kindly provided by
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Figure 2: Velocity and temperature deviation: Fixed temperature. R = 107, a = 11.1778.
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Figure 4: Derivatives of ω and θ: Fixed ßux. R = 107, a = 8.5456.
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Figure 5: Derivatives of ω and θ: Fixed temperature. R = 107, a = 11.1778.
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Figure 6: Product of ω and θ: Fixed ßux. R = 107, a = 8.5456.
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Figure 7: Product of ω and θ: Fixed temperature. R = 107, a = 11.1778.
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Figure 9: Optimal wave number a.

Rodney Worthing. Having found the minimizing values for the wave number a numerically,
from relation (58) we can determine the value of b. For R = 109 it is b = 0.446. With
this value and with relation (56) we plot the bounding curve suggested by the theory in the
preceding section (dashed line.)

Finally we give plots for the dependence of the wave number on R. First we compare
our data points to those of Rodney Worthing in Fig. 9.

Then in Fig. 10 we compare that with the theoretical prediction of C. Doering and
J. Otero[4] who derived the scaling Nu ∼ Ra

5
12 . They predict the dependence a ∼ R

3
17 ,

whereas we deduced in the preceding section the dependence a ∼ R 2
11 . We have transformed

the curves so that our theoretical curve be a horizontal line. From this plot we see that the
Doering�Otero theory agrees somewhat better than what follows from the prediction of the
preceding section.

We wanted to see if we really capture the asymptotic behavior�and the scaling�with
our numerical data that extends up to R = 109. We calculated the slope for the analogous
dependence log(Nu) vs. log(R) for the Þxed temperature problem. We ended up with
similar values for the slope at R = 107.5: 0.41. It has been proved that the single wave
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Figure 10: Optimal wave number a.

number bound gives a scaling Nu ∼ R 3
8 (3/8 = 0.375.) This leads us to the thought that

we would have to go to much higher values of the Rayleigh number R than 109.
Another way of estimating the value of b is by solving the boundary layer equations 49)

and (50). We approached this problem in a couple of different ways. In one way we tried
to minimize the functional (55) by truncating the upper boundary to some Þnite value (say
4), solving (49) and (50) up to this value and evaluating the functional (55). We considered
the boundary conditions for Θ, Ω## and Ω### at the upper limit of (55) as parameters and
so tried to minimize J with respect to those parameters. In the other way we used a
boundary value problem solver provided by Matlab, again, assuming that we have reached
asymptotic behavior of the solutions for some Þnite value of the independent variable ξ.
Then we changed this value and solved the problem again. In both ways we encountered
some problems. In the Þrst approach we were able to do several iterations (using gradient
methods) in the course of minimizing J . However our results were very sensitive to the
initial point we chose and were not very consistent. In the second approach we observed
extreme sensitivity on the truncation limit. Generally we would expect that increasing the
the truncation value would lead to convergence of the solution. Unfortunately that was not
the case: The solution changed dramatically even for small changes of the truncation limit
(e.g. from 4 to 4.5.) In fact, beyond some point we were not able to Þnd a solution at all.
Our second approach worked very successfully for the Þxed temperature case which differs
only by the boundary condition for the temperature deviation Θ.

The difference in the velocity proÞle suggests the possibility of different structure of the
boundary layer in the Þxed heat ßux problem. It may be the reason for our difficulties
in solving the boundary layer equations. It also suggests the possibility of two boundary
layers, or signiÞes of the importance of an intermediate region (between the boundary layer
and the interior part where the functions are predominantly constant.) This question could
be clariÞed by a successful attempt in solving the boundary layer equations and comparing
their solution to the solution of the complete Euler-Lagrange equations in the single alpha
approximation.

Finally we comment on applying to the problem of bounding the heat transport the
multi-alpha approach developed by Busse[5]. If we assume that the scaling 3/8 is correct,
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we Þnd that in this general case the Nusselt number scales as Nu ∼ R
1
3 or, equivalently

Nu ∼ Ra
1
2 . The latter result has also been found by Otero et al.[3] by applying the

background method developed by Doering and Constantin.
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