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1 Introduction

Cave Rings are cave formations, or speleothems, consisting of thin circles on cave floors,
normally found surrounding a water splash point, beneath stalactites. The rings range in
diameter from a few centimetres to roughly two metres, and the width and height of the
deposit ranges from a few millimetres to a few centimetres. Examples from caves in Italy
can be seen in figure 1. Elliptical formations have also been observed in locations with
tilted cave floors. The rings tend to occur in locations where the floor is without strong
flows, and with a layer of dust or mud, although it is not clear whether this merely aids
their discovery, or is related to their formation.
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Figure 1: Rings photographed in a) Grotta Imbroglita and b) Grotta del Secchio in Italy,
from [9]
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There are currently two theories within the caving community as to the method of ring
formation. The first, designated the ‘splash ring’ mechanism, is thought to be the method
responsible for producing the larger rings, and postulates that the rings are formed due to
the accumulation of deposits from secondary drops being ejected from the primary drop
site [5, 9]. This requires that the majority of the secondary drops fall to the same radius.
This is explained in [5] as being due to the majority of the drops ejecting at 45◦ and then
travelling a distance determined by the kinetic energy of the primary drop, dependent on
the height of the source above the floor.

The second theory, designated the ‘fall down ring’ mechanism, thought to be responsible
for the smaller sized rings, was first proposed in [8] and theorises that the rings are formed
due to the accumulation of secondary drops produced from the spontaneous breakup of the
primary drop during its fall. In [9], Nozzoli et al. claim to prove through analysis of collected
data from various rings that this is in fact the method responsible for the formation of all
cave rings. They suggest that all of the primary drops break up at 142.7±7.2 cm from the
stalactite tip and then fall in a negative arc to the floor, due to ‘other forces’ than gravity
acting on the small secondary drops.

(a) (b)

Figure 2: Depiction of a) the ‘splash ring’ hypothesis and b) the ‘fall down ring’ hypothesis.

The aim of this project is to show, through analysis and experiments, that both the
‘splash ring’ and ‘fall down ring’ hypotheses are clearly false. We also test a new hypothesis,
that cave rings are formed in the same manner as coffee rings[3], that is, due to the enhanced
deposition at the edges of sessile drops.

2 Experimental Setup

In the following section, the experimental setup used throughout is described. A depiction
of the equipment used can be seen in figure 3. Throughout salt water was used as an
analogue to the water found in caves. The accuracy of this replacement is discussed in
section 6

A black aluminium sheet, 122 cm by 66 cm, was used as a surface which could be easily
heated and also provide contrast to the white salt crystals. This was raised a few cm off
the floor, and levelled using a spirit level, although the sheet was not flat to high precision.
Underneath were 6 fluorescent light tubes, centred in the width of the sheet and evenly
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Figure 3: Depiction of the experimental setup used throughout.

distributed along the length of the sheet. These were on for the duration of all experiments,
and left on for several hours before any experiment began, to provide even heating to
encourage evaporation, reducing the time scales of the experiments. The sheet reached
temperatures of 25-27◦C, and was fairly consistent in time, though not evenly distributed
across the sheet.

Above this sheet was a system of rubber tubing connecting a variable low flow pump
with a source of salt solution, which was varied in concentration for different experiments.
The solution was pumped at a constant, controllable rate. The calibration of the pump was
carried out by collecting the liquid pumped over a period of time for a specific setting, then
using a combination of accurate weight and density measurements, the volume pumped
per hour was found. It was noted that the rate was very consistent between different
measurements. The end of the tube was suspended over the table using system of pulleys
and string, and thus the height above the table could be adjusted between 0 and 2m.

A Nikon D200 model digital SLR camera was set up on a tripod next to the table to
record images from experiments. This was set on a timer to take images at 15 minute
intervals throughout all experiments. The images were then processed using the Image
Processing Toolbox in the Matlab 2010a software program.

3 Splash Ring Conjecture

3.1 Literature

The ‘splash ring’ conjecture is described in [5]. It is claimed that 45◦ is the most probable
angle for secondary drops to be ejected at, and that the subsequent radius of the ring is
determined by the amount of kinetic energy imparted to the primary drop on its fall from the
stalactite tip. This has several logical flaws, the most obvious being the assumption that the

171



secondary drops will almost always gain the same amount of kinetic energy from the splash,
and therefore land at the same radius from the splash site every time. The work of [1] shows
that, in the case of drops hitting a very shallow liquid layer, as is likely under stalactites,
there is a range of emission angles and a wide range of emission velocities, resulting in
a range of splash radii. The literature surrounding the investigation of the transport of
soil and plant pathogens via raindrops uses a ‘Fundamental Splash Distribution Function’
which assumes that the mass splashed falls exponentially with radius, see e.g. [10], and is
confirmed experimentally.

3.2 Experiment

In order to experimentally disprove the splash ring conjecture, the setup described in sec-
tion 2 was used, with the source raised 2m above the sheet, and a 15% salt solution was
dripped at a rate of 17.7±0.5 ml per hour. The resulting pattern of salt crystals left on the
sheet after 19 hrs 15 min can be seen in figure 4(a), where the image has been manipulated
to highlight the location of the salt crystals as follows, using the Image Processing Toolbox

in Matlab 2010a:

1. Background gradients due to lighting removed.

2. Image converted to greyscale.

3. Exposure adjusted to rescale pixels with an intensity index of greater than 0.5 to an
index of 1.

4. Image converted to black and white.

5. Image taken before experiment started removed to eliminate background items.

The pattern seen in the bottom right of the photo is due to reflections of drops from a piece
of equipment located next to the sheet, and so all numerical calculations from this image
use the upper half of the splash pattern only. This experiment was not designed to imitate
cave conditions, but to demonstrate clearly the distribution of secondary drops produced
by a single drop.

The distribution of salt coverage, a proxy for drop mass, versus radius can be seen in
figure 4(b), as calculated from the image in figure 4(a). The salt coverage ratio is calculated
from the ratio of white to black pixels within a given radius range. The radius is calculated
by finding the length of a pixel in an image using the known dimensions of the sheet. At
small radii, there is no salt due to the constant recycling of the water beneath the source
preventing crystallisation from occurring. From roughly 4-10cm, the surface is completely
covered in salt crystals, and so the Salt Coverage Ratio is saturated at a value of 1. The
method of using photographs from above the table means that the thickness of the salt at
this point cannot be determined. The fact that some radii appear to have coverage ratios
greater than one is due to the limitations of the technique employed: because the camera
could not be placed directly over the sheet due to the presence of the source equipment, the
pictures are taken at a slight angle, and so each pixel is not the same length, as assumed in
calculations. There are also inherent errors in taking radial calculations from gridded data.
However, this experiment was not intended to provide accurate numerical data, merely
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to provide a qualitative demonstration of the inaccuracy of the ‘splash ring’ conjecture.
The clear exponential tail to the distribution at radii greater than 10cm shows qualitative
agreement with the literature as discussed in section 3.1.

To determine whether the presence of a central stalagmite could have an effect on the
location of splashes, the same experiment was repeated, but with an upturned Pyrex beaker
placed under the centre of the source, see figure 5(a). A 20% salt solution was dripped at
a rate of 10.1 ± 0.6 ml per hour, and the resulting pattern left after 21.5 hours can be seen
in figure 5(b). Clearly there is no ring formed, and the pattern formed is similar to that
formed with the stalagmite absent, although, as the flow rate was lower, the pattern is not
as large.

4 Fall Down Ring Conjecture

4.1 Literature

The ‘fall down’ ring conjecture was first proposed in [8] as an explanation for the smaller
sized cave rings observed. In [9], Nozzoli et al. claim to prove that all cave rings are
produced by this method. They collected data from 67 rings in 5 caves in Central Italy, as
well as creating some artificial rings by placing wooden tablets covered in soot underneath
several stalactites, over rings. The data they collected can be seen in figure 6, where an
apparent correlation between the height of the source stalactite and the ring radius can be
seen. They fit this data to a quadratic function, and then conclude that all the rings are
produced by drops that break up at 142.7±7.2 cm below the source stalactite, then execute
a negative arc to the ring radius. To conclude, because a curve can be fitted to the data,
that the theory must therefore be correct, is optimistic at best. There could be many ways
to explain a relationship between the two quantities measured, and there is no explanation
as to the mechanism behind the proposed breakup, or the physically unlikely negative
curvature, which is put down to ‘unknown’ forces. There is also an apparent contradiction
in their explanation - if the drops always break up, then what forms the central stalagmite
visible at the centre of all the rings? The artificial rings, which they claim were formed on
the wooden tablets over a period of roughly 20 days, would perhaps be more convincing if
the paper contained any pictures of these rings or a fuller explanation of what was found.
The only thing to be concluded from this work is that any successful production theory
must explain this apparent correlation between source height and ring radius.

A review of the literature involving drop breakup revealed the extensive study of Viller-
maux and Bossa[11] into the dynamics of single drop deformation and breakup, with the
aim of explaining the distribution of raindrop sizes found at ground level. The condition
for drop break up is We > 6, where We is the Weber number of the drop. For such a drop,
first it pancakes and then the radius increases exponentially with time until breakup. If
We < 6, the drop pancakes but then oscillates around a mean radius. For a drop falling in
static air, the Weber number is defined as the ratio between the gravitational force on the
droplet and the surface tension on the drop:

We =
ρgd2

σ
, (1)
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(a)

(b)

Figure 4: Experiment described in section 3.2 after 19.25 hours. (a) shows a photo of the
sheet, with the exposure manipulated to highlight the salt crystals. (b) shows the salt
coverage ratio versus radius, calculated from the image in (a), showing a clear exponential
tail to the distribution.
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(a) (b)

Figure 5: Experiment as described with Pyrex beaker to represent a stalagmite. (a) shows
the beaker in place on the aluminium sheet. (b) shows a manipulated photo to highlight
the salt crystals present after 21.5 hours.

Figure 6: Figures from [9], showing a) the measured height of the source above the rings vs
the radius of the ring, for the in situ rings and the artificial rings (large red symbols). The
solid black line shows the best fit 2nd degree polynomial. b) shows the distribution of the
difference between the best fit height and the actual height.
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where ρ is the density of the water, g is gravitational acceleration, d is the diameter of
the drop and σ is the surface tension between the water and the air. For a pendant drop,
such as one forming on a stalactite, at detachment the gravitational force on the drop just
exceeds the surface tension, i.e.

1

6
πgρd3 ≈ πDσ, (2)

where D is the diameter of the source. Combining (1) and (2) gives We ≈ 6D/d. and thus
the condition for the drop to breakup becomes D > d, i.e. the drop must detach whilst its
diameter is less than that of the source. This is physically unlikely for a detaching pendant
drop, see for example [4] and figure 7, and implies the drop would initially have a diameter
of over 7cm.

d

D

Figure 7: Depiction of a pendant drop from a stalactite. D is the diameter of the source of
liquid and d is the diameter of the drop itself.

4.2 Experiment

To disprove the ‘fall down’ conjecture experimentally, the setup described in section 2 was
used, with the source raised 2m above the sheet, and a 20% salt solution was pumped at
a rate of 17.7 ± 0.5 ml per hour. A plastic beaker was placed on the sheet directly below
the source, in order to catch the primary drop. The experiment was run for 22 hours, after
which the beaker contained the majority of the water; a small amount had bounced out as
the beaker began to fill, see figure 8. No drops were observed breaking up throughout any
of the experiments. It must be noted that 2m is at the lowest end of the observed rings, see
figure 6, and that a higher fall height would be more rigorous in disproving the ‘fall down’
conjecture, however 2m was the limit of the equipment available.

5 Coffee Ring Theory

A ‘coffee ring’ is the deposit formed when a sessile drop of a solution containing dissolved
particles, such as coffee or salt, dries. This was investigated by Deegan et. al in [3], and
shown to be the result of a combination of contact line pinning and non-uniform evaporation
flux. If the contact line of a drop is pinned, by a slightly rough surface for example, then,
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(a) (b)

Figure 8: Experiment as described with plastic beaker to catch primary drops. (a) shows
the beaker in place on the aluminium sheet. (b) shows a manipulated photo to highlight
the salt crystals present after 22 hours.

when volume is lost, the majority is taken from the centre of the drop, see figure 9. The
rate limiting step in evaporation from a drop is the diffusion of water vapour away from the
saturated region around the drop. Due to the geometry of the drop, assumed to be close
to a spherical cap, the evaporation is enhanced at the contact line, where it is easier for a
water vapour particle to escape, see figure 10(a).

Figure 9: Depiction of volume lost from (a) a drop where the contact line is free to move
and (b) a drop where the contact line is pinned. [3]

Because of the mis-match in the location of maximum mass loss and maximum evapo-
ration flux, see figure 10(b), there is a constant flux of fluid towards the edge of the drop to
replace the evaporated water. As the majority of the evaporation occurs at the edge of the
drop, the majority of the dissolved particles are deposited at the edge of the drop, resulting
in the visible ring left behind.

While this is a well formed theory for drops of the size of a few cm or less, it was
proposed that this could also be the mechanism behind the formation of cave rings. If the
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(a) (b)

Figure 10: (a) Depiction of a water vapour particle performing a random walk at the edge
of the drop. It is more likely to escape near the contact line. (b) Magnitude of mass
loss, dM/dt, dashed line, and evaporation flux, J , line, versus radius of the drop. The
evaporation flux is singular at the contact line. [3]

flow rate in the cave was high enough to produce a large puddle, perhaps perhaps during
a rain storm, then the coffee ring mechanism could produce a ring of limestone deposit
around the edge of the puddle, forming the cave ring left behind.

5.1 Large Coffee Ring model

5.1.1 Large Puddle

To test the ‘coffee ring’ hypothesis, we developed a model for large coffee rings. We begin
by modelling a large puddle, fed by a source and losing water to evaporation, with a surface
described by h(r, t), using the 2-D quantities depicted in figure 11, under the following
assumptions:

• slow, viscous flow,

• shallow puddle, R >> H,

• source within r = a,

• no slip at z = 0,

• no stress at z = h.

The momentum balance in the radial and vertical directions can then be written as
follows:

1

ρ

∂p

∂r
= ν

∂2u

∂z2
+ smaller, (3)

1

ρ

∂p

∂z
= g + smaller, (4)

where p (r, z, t) is the pressure in the puddle, ρ is the density of the fluid (assumed con-
stant), ν is the molecular diffusivity of the fluid, and g is gravitational acceleration. These
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R

Figure 11: Depiction of the quantities described in the large puddle model. h(r, t) is the
surface of the puddle, (u,w) is the velocity field withing the puddle, H and R are the
vertical and radial scales respectively, and a is the radius containing the source.

expressions, along with the boundary conditions previously mentioned, lead to the following
definitions of the pressure, p and horizontal velocity, u:

p = ρg(h − z), u =
g

ν

∂h

∂r
z(z − 2h). (5)

Mass conservation leads to the following relation between the horizontal and vertical veloc-
ities, u and w respectively:

∇ · v =
1

r

∂

∂r
(ru) +

∂w

∂z
= 0. (6)

Integrating (6) in the vertical:

∫ z

0

1

r

∂

∂r
(ru) dz + w(z) − w(0) = 0. (7)

The dynamical boundary conditions for w are as follows:

w(z = h) =
∂h

∂t
+ u · ∂h

∂r

∣

∣

∣

∣

z=h

+ wevap, (8)

w(z = 0) = H(a − r)wsource, (9)

where wevap and wsource are the vertical velocities of fluid leaving via evaporation and
entering from the source respectively, and H(a − r) is a Heaviside function. We have
assumed here that the source is placed at z = 0, but the results that follow are the same if
the source is instead assumed to be at z = h. If we evaluate (7) at z = h:

∫ h

0

1

r

∂

∂r
(ru) dz + u · ∂h

∂r

∣

∣

∣

∣

z=h

+
∂h

∂t
+ wevap − H(a − r)wsource = 0, (10)

1

r

∂

∂r
(r

∫ h

0
u dz) +

∂h

∂t
+ wevap − H(a − r)wsource = 0. (11)

The form of wevap can be found from Hu and Larson[6], who expanded on Deegan et al.[3]
to find an exact form for the evaporation flux over a sessile drop. It turns out that solving
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for the flux is equivalent to the problem of deriving the electrostatic potential formed by
the union of two spherical caps, as previously solved by Lebedev[7]. Taking the form for a
spherical cap with contact line angle equal to zero, assuming that for a large puddle that
this will be approximately correct, then

wevap =
κ√

R2 − r2
, κ =

2Dρv(1 − θ)

πρ
, (12)

where R is the radius of the puddle, D is the molecular diffusivity of water vapour in air,
ρv is the saturated vapour density of water, ρ is the density of liquid water, and θ is the
ambient relative humidity.

Combining (5), (11) and (12), the evolution of the puddle height can be written as
follows:

∂h

∂t
= H(a − r)

q

πa2
− κ√

R2 − r2
+

2g

3ν

1

r

∂

∂r

(

r
∂h

∂r
h3

)

, (13)

where q is the source flux in m3/s. Assuming a steady state, i.e. ∂h/∂t = 0, then we can
solve for the height profile of the puddle, h:

h(r) = 21/4

[

g(r) + H(r − a)

[

1

2

(

1 − r2

a2

)

+ log
(r

a

)

]]1/4

, (14)

g(r) = log

(

r

1 −
√

1 − r2

)

−
√

1 − r2, (15)

where the parameters have been non-dimensionalised as follows: h → h/H, r → r/R,
a → a/R. The non-dimensional height and radial scales are defined as follows:

R =
q

2πκ
, H =

(

3νq

2πg

)1/4

. (16)

The form of h(r) can be seen in figure 12 for a = 0.1.

5.1.2 Solute Dynamics

We now include the concentration of a passive solute, such as salt or coffee, c(r, z, t), and
consider a section of the puddle from r1 to r2 and z = 0 to z = h, as depicted in figure 13.
If we require conservation of c over the section, then this implies:

∂

∂t

∫ r2

r1

∫ h(r,t)

0
c(r, z, t) dz r dr = −

[

r

∫ h(r,t)

0
Jr(r, z, t) dz

]r2

r1

+

∫ r2

r1

rc(r, 0, t)w(r, 0, t) dr,

(17)
where Jr(r, z, t) is the radial flux of solute, and the solute arrives through the bottom with
flux Jz(r, z = 0, t) ≡ w(r, z = 0, t)c(r, z = 0, t) = wsourcecsource, but the solute cannot leave
the puddle through evaporation, and so the flux of concentration at z = h is zero. If we
rewrite (17) as a single integral over (r1, r2), set the integrand to zero since the limits are
arbitrary, and use the definition of J = cu − χ∇c, we get

∂

∂t

∫ h(r,t)

0
c(r, z, t) dz = −1

r

∂

∂r

[

r

∫ h(r,t)

0

(

c(r, z, t)u(r, z, t) − χr
∂c

∂r

)

dz

]

+ csourcewsource,

(18)
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Figure 12: The steady state solution h(r), the height of the puddle, see (14), for a = 0.1.
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Figure 13: Depiction of section of puddle considered in section 5.1.2.
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where χ is the molecular diffusivity of the passive solute.
If we now consider the dimensions of each of the terms in the advection-diffusion equa-

tion, then we find the following balance:

∂c
∂t + 1

r
∂
∂r (ruc) + ∂

∂z (wc) = χ1
r

∂
∂r (r ∂c

∂r ) + χ ∂2c
∂z2 ,

uc
R = χc

R2 + χc
H2 ,

(19)

where the bottom row indicates the dimension. The second term on the RHS dominates
on that side due to the shallow puddle assumption made previously, R >> H. Thus, the
ratio between the left and right sides becomes uH2/Rχ = H/R.Pe, where Pe is the Peclet
number of the fluid. The Peclet number is likely to not be large in a dripping cave fluid, and
so the vertical diffusion term clearly dominates. Thus, we can assume that vertical diffusion
acts fast enough to homogeonize the solute over the depth of the fluid, i.e. c(r, z, t) ≈ c̄(r, t),
and we find the following expression for the evolution of the concentration flux from (18):

∂

∂t
(hc̄) = −1

r

∂

∂r
(rc̄ū) + H(a − r)wscs + χ

1

r

∂

∂r

(

r
∂c̄

∂r
h

)

, (20)

where the subscript s denotes source properties, and ū is the vertically integrated horizontal
velocity u. From now on we will drop the bar over c.

If we first consider the simpler case of the steady state, ∂h/∂t, then we can rewrite (20)
as follows:

h
∂c

∂t
= H(a − r)

cs

a2
+

1

r

∂

∂r

[

r

(

c
∂h

∂r
h3 + K

∂c

∂r
h

)]

, (21)

where K = πχH/q, τ = Hq/4πκ2, and the parameters have been non-dimensionalised as
follows: c → c/c0, cs → cs/c0, t → t/τ , and h and r as previously, where c0 is the initial
concentration of the solute within the puddle, and h is described in (14).

Solving this numerically as an initial value problem using the pdepe routine in Matlab
2010a, the results up to t = 0.9 can be seen in figure 14, where a = 0.1, cs = 1 and K = 0.01.
It can be seen that, as expected, the solute is swept to the edge of the puddle over time,
where it collects.

(21) can also be solved analytically in certain regimes. It can be seen from figure 14
that, away from the edge of the puddle (r = 1), the solution for c(r) approaches a single
solution over time. To solve for this solution we thus set ∂c

∂t = 0. We also assume that, as
the gradients in c are not large away from r = 1, that diffusion can be neglected (K being
small). We are thus left with the following expression to solve:

1

r

∂

∂r

(

rc
∂h

∂r
h3

)

≈ −H(a − r)
cs

a2
. (22)

Using (14), we can evaluate:

r
∂h

∂r
h3 = −1

2

[

√

1 − r2 + H(a − r)

(

r2

a2
− 1

)]

, (23)

and so can solve (22), using the boundary condition of zero flux at r = 0, and matching
fluxes at r = a, to find:

c ≈
{

cs, r < a,K ≈ 0,

cs/
√

1 − r2, r > a,K ≈ 0.
(24)
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Figure 14: Solutions of (21) for t = 0 to 0.9, with a = 0.1, cs = 1 and K = 0.01.

Thus, the solution matches the source concentration within the source area, and outside
follows the evaporation profile (12). Comparing with the numerical solution, see figure 15, it
can be seen that the analytical solution is best for low r, and becomes worse as the gradient
of c increases, and diffusion becomes more important. At values of r close to to 1 and large
times, the numerical solution for c becomes linear, see figure 16.

Thus, we can assume that c(r, t) takes the form A(r)t + B(r) near r = 1. Introducing
this into (21), we get two coupled equations describing A and B:

0 =
1

r

∂

∂r

[

r

(

A
∂h

∂r
h3 + K

∂A

∂r
h

)]

, (25)

hA =
1

r

∂

∂r

[

r

(

B
∂h

∂r
h3 + K

∂B

∂r
h

)]

. (26)

We initially concentrate on (25), and redefine r in terms of the parameter ζ, which is small
near the puddle edge: r = 1 − Kαζ. We can approximate h near r = 1, and find:

h ≈
(

2

3

)1/4

23/8(1 − r)3/8 =

(

2

3

)1/4

23/8K3α/8ζ3/8, (27)

and from (23) we can rewrite:

r
∂h

∂r
h3 ≈ −

√
2

2

√
1 − r = − 1√

2
Kα/2ζ1/2, (28)
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Figure 15: Comparison of the analytical and numerical solutions for c(r) at large times
away from r = 1.

Figure 16: Numerical solutions for c(t) at various radii. Close to r = 1, the concentration
becomes linear with time.
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and so (25) can be rewritten:

r

(

A
∂h

∂r
h3 + K

∂A

∂r
h

)

≈ −A
1√
2
Kα/2ζ1/2 + K1−α ∂A

∂ζ

(

2

3

)1/4

23/8K3α/8ζ3/8 = 0, (29)

where we have integrated both sides. The integration constant is zero, as the expression is
equal to zero at r = 0. Rearranging:

(

2

3

)1/4

27/8K1−α ∂A

∂ζ
= Kα/8Aζ1/2, (30)

and choosing α = 8/9, we can integrate to find

A(r) = k exp

{

− 215/8

37/4K
(1 − r)9/8

}

, (31)

where k is a constant to be determined.
Considering the form of the solution, A(r)t + B(r), we know that A(r) vanishes away

from the edge of the puddle, as we have already shown that there is no time dependence
to the solution within the interior. Thus, B(r) must match the solution at the interior at
some point away from the edge. Equivalently, the total flux associated with B must match
the total flux of the interior solution. Thus we can find the constant k by evaluating both
sides of the following expression, a rewriting of (26):

−
∫

∞

0
rhAKα dζ =

∫

∞

0

∂

∂ζ

[

r

(

B
∂h

∂r
h3 + K

∂B

∂r
h

)]

dζ = interior flux, (32)

or

−k

(

2

3

)1/4

23/8K3/9

∫

∞

0
ζ3/8(1 − K8/9ζ) exp

{

−215/8

37/4
ζ9/8

}

K8/9 dζ = −cs/2, (33)

which can be re-arranged to find k(cs,K); the full expression can be found in appendix A.
We compare this with the numerical solution, see figure 17, using a logarithmic axis for the
concentration. The solution is fairly accurate above r = 0.85, improving closer to r = 1 as
would be expected.

5.1.3 Deposition Dynamics

In order to simulate the production of speleothems, we now include deposition via a sink
term in the concentration evolution equation, assuming immediate sedimentation to the
bottom. We must also include an equation for the evolution of the depth of the deposit,
d(r, t), and therefore allow the height, h(r, t) to evolve also. This results in a system of
three coupled equations:
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Figure 17: Comparison of the analytical solutions (31) and (24) for the concentration, c, at
t = 100, with the numerical solution near r = 1. As before, cs = 1, a = 0.1 and K = 0.01.
The solution for r ≈ 1 clearly improves as it approaches 1.

∂(h − d)c

∂t
= H(a − r)

cs

a2
+

τp

H
(csat − c)

+
1

r

∂

∂r

[

r

(

c
∂h

∂r
(h − d)3 + K

∂c

∂r
(h − d)

)]

, (34)

∂(h − d)

∂t
= H(a − r)

1

a2
− L√

R2 − r2
+

1

r

∂

∂r

[

r
∂h

∂r
(h − d)3

]

, (35)

∂d

∂t
= − τp

Hs
(csat − c)(h − d), (36)

where csat is the saturation concentration of the solute, p is a precipitation rate, s is a
size scale for the concentration of crystals per depth of deposit, R(t) is the boundary of
the puddle and L = πκ/q. h and c parameters have been non-dimensionalised as before,
however the time and radial parameters have been non-dimensionalized as follows: r → r/λ,
a → a/λ, R → R/λ, t → t/σ, where λ2/σ = q/πH. For limestone (Calcium Carbonate),
p is a function of temperature, CO2 pressure, and the depth of the fluid, and we take the
value from [2]. The evolution equation for the depth of liquid, (h − d), clearly contains
a singularity at r = R in the evaporation term. This unfortunately makes the system
impossible to solve, as previously, using the pdpe routine in Matlab. Due to the limited
time available on the project, it was not possible to develop an alternative method for
finding a numerical solution before completion. It must also be noted that this system
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Figure 18: Numerical and analytical solutions to (34), where the solid blue line is the
concentration profile c(r) at t = 10.

now has variable boundaries, and r = 1 does not necessarily correspond to the edge of the
puddle, and so any alternate method for solving the system would need to consider the
variation in the outer boundary, R(t).

We can, for small values of d, make the approximation h >> d, i.e. h − d ≈ h, and
so again use use the steady state form of h derived in section 5.1.1, under the assumption
∂h/∂t = 0. We then calculate the depth profile, d(r, t), independently from the concentra-
tion profile, c(r, t). The resulting concentration profile at t = 10 can be seen in figure 18,
where cs = 1, csat = 1.1, a = 0.1, and K = 0.01. For c < csat, the same analytical solutions
apply as previously, (24). For c ≥ csat, the steady state solution is c = csat. It is possible
to find the transition point at which c = csat from (24):

r(csat) =

√

1 −
(

c0

csat

)2

,

and the analytical solutions can be seen plotted in figure 18. It can be seen that the
analytical solution doesn’t hold near r = 1, where the advection and diffusion terms become
important. The resulting depth profile, d(r) can be seen in figure 19, along with the height
profile h(r), where the deposit of solute has clearly created a ring shape.

5.2 Experiments

To test the ‘coffee ring’ theory we first lowered the source to within a few mm of the
aluminium sheet in order to first ‘grow’ a puddle to test the concept. Initially, the results
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Figure 19: Solute concentration, blue, deposit depth, green, and liquid height, black, profiles
at t = 10. Note that the deposit depth profile has been multiplied by 104 for clarity.

looked promising. Figure 20 shows the ring of salt produced by a puddle a few cm in
diameter. However, increasing the rate of flow to grow puddles of the size required to
explain the cave rings did not produce the results hoped for. Past a few cm, growth is
dominated by surface tension effects at the contact line of the puddle, see figure 21. Whilst
coating the aluminium sheet in vegetable oil to reduce this effect did result in a smoother
boundary to the puddle, it still was not possible to produce a large, round puddle. Given
that the aluminium sheet was kept as flat as was possible, and that cave floors are hardly
uniform surfaces (see figure 1), this would seem to disprove the ‘coffee ring’ hypothesis. It
was possible to find a flow rate at which evaporation matched the source flux, see figure 22,
but this was definitely not a circular puddle.

The second set of experiments involved raising the source by 2m in order to see if the
dynamics of the source dropping from above would affect the puddle formation. The source
now arrived in drops of just under 1 ml in volume, which is similar to the volumes mea-
sured in situ by Nozzoli et al.[9]. It was found that, because the fraction of mass ejected as
secondary drops was quite high, a higher flow rate was required to produce a puddle of a
substantial size underneath the source. The correlation between puddle size and flow rate
was expected from our model, however, while a substantial amount of crystals formed from
the secondary splashes, none formed on the puddle itself, see figure 23. It is speculated
that, from observations of the experiment in process, the large amount of kinetic energy im-
parted into the puddle by each drop effectively mixed the puddles so that the concentration
profile predicted did not evolve, the solution within the puddles never exceeding saturation
concentration once equilibrium was reached. As with the previous splashing experiments,
see section 3.2, the salt splash formed a distribution with an exponential tail, see figure 24.

We speculated that perhaps the porosity of the cave floor might dictate the formation
of the cave rings, and so repeated the experiment with piece of black cloth on top of the
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Figure 20: Initial experiment with the source close to the sheet, producing a small ring of
salt. 10% salt solution was pumped at a rate of 1.4 ± 0.2 ml per hour for 46.5 hours

(a) (b)

Figure 21: Two experiments that show the difficulties in creating a perfectly circular puddle,
both with a 10% salt solution pumped at a rate of 14.7 ± 0.7 ml per hour. (a) shows a
puddle after 2.25 hrs with the original setup. (b) shows a puddle after 9 hrs, where the
sheet has had a thin layer of vegetable oil applied to reduce surface tension effects.
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Figure 22: Experiment with flow rate of 6.4 ± 0.4 ml per hour after 5.25 hrs. Equilibrium
has been reached and salt crystals are being deposited at the edge of the puddle, but the
puddle is not circular.

Figure 23: Experiment with source ∼2m above the sheet, with 10% solution being pumped
at a rate of 17.17 ± 0.5 ml per hour, after 26.75 hrs. The salt deposits are produced by
secondary droplets ejected from the puddle, which can be seen in the centre of the picture.
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Figure 24: Salt coverage vs radius for figure 23 with an exponential curve fitted. There is
a ∼ 10 cm ring where the area is saturated.

Figure 25: Experiment as previously, with black cloth covering the sheet, after 21.5 hrs.
Salt has been deposited at the boundary of the wetted region, but the shape is non-uniform.
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sheet, in order to test whether the spread of the puddle through a porous medium might
be more uniform. The resultant salt formation can be seen in figure 25. A ring has formed,
as the previous mixing of the solution within the puddle is not possible, however the shape
is still non-uniform.

5.3 Speleothem Science

As it appears that the coffee ring theory is not able to describe the large cave rings observed,
we turned to the science of cave formations, or speleothems. There is a huge variety of
formations, but the basic method of formation is the same for most, depicted in figure 26:

• Rain water seeps down through the top layer of soil, dissolving Carbon Dioxide to
form Carbonic acid.

• On contact, the acid dissolves the bedrock, normally Calcium Carbonate.

• The solution comes into contact with air on meeting a cave, and the dissolved stone
is then deposited out.

Figure 26: Depiction of the formation of speleothems, through the formation of Carbonic
acid and the dissolving of Calcium Carbonate.

The overall chemical reaction involved is as follows:

CaCO3 + CO2 + H2O ↔ Ca2+ + 2HCO−

3 . (37)
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The equilibrium for the reaction is towards the right, the ionic solution, when the solution is
within the rock, not in contact with air. However, when the solution is in contact with the
air, the chemical equilibrium moves to the left, and so CO2 is out-gassed quickly and CaCO3

deposited, as the solution is over-saturated. This is the case for the majority of formations,
although in some situations, such as in highly humid regions or when the path the liquid
takes is not sealed from air, the solution is under-saturated. The modelling for this project
assumed that the solution was under-saturated, as is the case for the salt solution used in
the experiments. As cave rings are relatively rare, it could be that they are in one of the
unusual situations mentioned, however there is currently no data on the concentrations of
Calcium Carbonate in the solutions forming cave rings.

It is possible to solve the model described in section 5.1.3 under the condition that
the source concentration is greater than the saturation concentration, i.e. cs > csat. The
resulting solution at t = 10 for csat = 0.5, cs = 1, is shown in figure 27. It can be seen that,
although some of the solute is still swept to the edge of the puddle, most is deposited in
the centre, where the source is. The resultant deposit is shaped like a classic stalagmite.

Figure 27: Numerical solution with csat = 0.5, cs = 1, K = 0.01, and a = 0.1, at t = 10.
The deposit depth, green line, has been scaled by 103 to allow for comparison.

6 Conclusion

This project set out to test the hypotheses set out in Nozzoli et al.[9] for the formation of
cave rings, namely the ‘splash ring’ and ‘fall down ring’ hypotheses, and to test our ‘coffee
ring’ theory. It was shown clearly that both the ‘splash’ and ‘fall down’ hypotheses were
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unverifiable experimentally.
A mathematical model for large coffee rings was developed, and numerical solutions that

matched our expectations for ring formation were produced. Unfortunately, experimenta-
tion showed that the flaw in our theory was that the formation of large, circular puddles
seems to be impossible on a realistic surface, as surface tension at the contact line seems to
dominate while the puddle grows, producing non-uniform shapes. Experiments also showed
that the kinematics of drops arriving from 2m produces significantly different sized puddles
than those where the source was close to the sheet. The majority of cave formations re-
sult from solutions that are over-saturated in Calcium Carbonate when in contact with air,
whereas our experiments used under-saturated salt solution.

It seems clear that coffee rings are unlikely to be the formation method for cave rings,
although there is still a little work to be done before it can be ruled out completely. Due
to the limitations of the equipment and time available, it wasn’t possible to create puddles
larger than c. 10 cm when the source was raised 2m above the sheet. Using a higher source
flux, it should be possible to see if the kinematics of the arriving drops affect the shape of
larger puddles. Also, to rule out the ‘fall down ring’ hypothesis more comprehensively, an
experiment could be designed where the source passes through a hole in a sheet, and the
water collected below, in order to show that no drops split and land on the sheet.

In general, there appears to be a dearth of mathematical work in the area of speleothem
formation, with an astounding range of speleothems, both beautiful and bizarre, still not
understood. The development of a more accurate mathematical model for such formations
could only be of benefit to the geological community.
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A Full Concentration Solution

In section 5.1.2, the time dependent part of the solution to (21) close to the edge of the
puddle at large t, A, is set out in (31), where the constant, k, is given by (33). Rearranging,
we find

k(csat,K) =
31/4

213/8
csat
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∞
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}

dζ

−K19/9
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dζ

]

−1

, (38)

≈ 31/4

213/8
csat

[

1.74K11/9 − 3.48K19/9
]
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, (39)
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