
Lecture 6

Bounds on Turbulent Transport
C. Doering

Notes by A. Alexakis & E. Evstatiev

1 Introduction to the Background Method

The background method is a mathematical technique for deriving rigorous bounds on the
energy dissipation rate in Navier-Stokes and similar problems.

2 Momentum Transport Across a Shear Flow

To introduce the general idea of the background method we are going to consider the
example of momentum transport across a shear layer. Consider a ßow between two two
Þnite plates. The bottom plate is at rest while the top plate is moving with speed U∗, see
Fig. 1. We introduce Cartesian coordinates with unit vectors i, j and k so that the upper
plate is moving in the x direction, the lower plate is in the y = 0 plane, the upper plate
is in the y = h plane. The boundary conditions for this problem are periodic in x and z.
The area of the plates is A; eventually we will take A → ∞ to describe the problem in an
inÞnite domain.
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Figure 1: The Plane Couette ßow.

The incompressible Navier-Stokes equations are

∂tu+ u ·∇u+ 1
ρ
∇p = ν∆u

∇ · u = 0. (1)

We start by asking the question: What is the vertical ßux of horizontal momentum
across the layer?

Dimensional analysis shows
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Momentum ßux =
horizontal momentum

time× area
=

horizontal force

area
=
F

A
(2)

= wall shear stress = τ.

The dimensions of the quantities are

[τ ] =

!
F

A

"
=
ML

T 2
1

L2
=M

1

T 2
1

L
. (3)

The system parameters� dimensions are [U∗] = L/T , [h] = L, [A] = L2, [ν] = L2/T , and
[ρ] = M/L3, where M denotes the dimension of mass. With these we can express the
space-time averaged momentum ßux as

τ = ρhA

#
U∗
h

$2# h
A

$
× β

#
U∗h
ν
,
A

h2

$
= ρU2∗ × β(Re, a) , (4)

where Re = U∗h
ν and a = A

h2
. We are interested in the function β(Re, a), the dimesionless

function of two dimensionless variables that fully describe the system.
An alternative version of the question could be posed in the following way. DeÞne the

time averaged dissipation rate per unit mass &, which is also equal to the time averaged
power input required to maintain the ßow. Quantitatively

& =
FU∗
ρAh

=
τ

ρ

U∗
h
. (5)

Remembering the expression for τ in (4), we can write

& =
U3∗
h
× β(Re, a) . (6)

Therefore a bound on the energy dissipation rate gives also a bound on the momentum
transport.

In what follows we derive bounds on &. First let us guess what we might Þnd. For
laminar ßow we can expect the following dependence

τ ∼ ρνU∗
h
⇒ β ∼ 1

Re
. (7)

For turbulent ßow we do not expect dependence on the viscosity as we take ν → 0 (due to
the cascade picture of energy transport across length scales), so we can write
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& ∼ U2∗
U∗
h
⇒ β ∼ Re0. (8)

Further we consider the exact stationary solution of the Navier-Stokes equations for
plane Couette ßow, see Fig. 1:

ust = i
U∗
h
y, pst = const, τst = ρν

U∗
h

βst =
1

Re
. (9)

Now we set up a minimization problem. Let us multiply the Navier-Stokes equations (1)
by ρu and integrate over the volume. We have

d

dt

%
1

2
ρ|u|2 d3x = −

%
ρν|∇u|2 d3x+ U∗

%
top plate

ρν
∂u1
∂y

dx dz. (10)

The only surface integral that survives after we integrate by parts is over the top plate
of the volume. The term on the left-hand side of (10) is the kinetic energy of the ßuid.
The Þrst term on the right-hand side is the instantaneous bulk dissipation rate, and the
second term on the right-hand side is the input power (equal to U∗F (t), where F (t) is the
instantaneous force applied to sustain the motion of the upper plate.) Suppose the kinetic
energy behaves as o(t) for large times, then its long time average vanishes, and we arrive at
the following deÞnition of the space-time averaged dissipation energy

& =
&
ν|∇u|2' . (11)

Therefore it is obvious that

& ≥ min
∇ · u = 0
u|y=0 = 0
u|y=h = U∗

&
ν|∇u|2' . (12)

To put this in a variational frame, we consider the functional

F [u] =
% (

ν|∇u|2 − 2q(x)∇ · u) d3x, (13)

where q(x) is a Lagrange multiplier, enforcing the divergence-free constraint, which plays
the role of a pressure. Variation of the above functional with respect to u and q and equating
the results to zero yields

0 =
1

2

δF
δu

= −ν∆u+∇q,

0 = −1
2

δF
δq

= ∇ · u. (14)
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Thus we obtain the stationary Stokes equations as the Euler-Lagrange equations. The
solution is given by (9) where pst is substituted by qst. We would like to know next if this
solution really gives a minimum. The answer is affirmative and the proof follows from the
sequence of realtions below.

DeÞne

u = ust + v, (15)

where v is the ßuctuating deviation of u from plane Couette ßow, satisfying

∇ · v = 0, v|y=0 = v|y=h = 0. (16)

The gradient of u is given by

∇u = ijU∗
h
+∇v, (17)

from which follows

|∇u|2 = U2∗
h2
+ 2

U∗
h

∂v1
∂y

+ |∇v|2. (18)

If we Þnd & from formula (11), we obtain, after space-time averaging (noting that the cross
term vanishes),

& = ν
U2∗
h2
+
&
ν|∇v|2' ≥ &st, (19)

which shows that indeed the solution (9) gives a minimum of &. Note that plane Couette
ßow is a solution for all Re and a so this lower bound is sharp. And sometimes this lower
bound is also an upper bound.

We ask the question of when this solution is absolutely stable. Let us consider the
equations for v. They follow from the Navier-Stokes equations after the substitution of (15)

∂tv + v ·∇ust + ust ·∇v + 1
ρ
∇p = ν∆v,

∇ · v = 0. (20)

We will prove the following statement: Plane Couette ßow is absolutely stable�and
hence the unique time asymptotic ßow�for sufficiently low Re. To see that, multiply the
Þrst of Eqs. (20) by v and integrate over the volume

d

dt

1

2

%
|v|2 d3x = −

% *
ν|∇v|2 + v · (∇ust)sym · v

+
d3x (21)
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and (∇ust)sym = 1/2
(
(∇ust) + (∇ust)tr

)
. On the left-hand side of this equation is time

derivative of the perturbation energy E(t) = , |v|2 d3x. On the right-hand side we have a
quadratic in the perturbation v form.

We note the inequality (sometimes referred to as Poincaré �s inequality)

%
|∇v|2 ≥ π2

h2

%
|v|2. (22)

Then we calculate

----% v · (∇ust)sym · v d3x
---- = ----% U∗

h
v1v2 d

3x

---- ≤
U∗
h

%
1

2
(v21 + v

2
2) d

3x ≤ U∗
2h

%
|v|2 d3x. (23)

So for the perturbation energy we have

dE(t)
dt

≤ −2
#
ν
π2

h2
− U∗
2h

$
E(t) =

= − ν
h2
(
2π2 −Re) E(t), (24)

and Þnally using Gronwall�s lemma we have

E(t) ≤ E(0)e− ν
h2
(2π2−Re)t → 0 if Re < 2π2 ≈ 20, (25)

which proves the assertion.
A more precise calculation shows that the critical value of the Reynolds number for this

kind of energy stability is ReE ≈ 82.6. To see how we can get a more precise value consider

dE(t)
dt

= −2
,

*
ν|∇v|2 + v · (∇ust)sym · v

+
d3x, |v|2 d3x

 E(t) ≤ −2λ0 E(t), (26)

where

λ0 = min
∇ · v = 0! |v|2 d3x = 1

v|y=0 = v|y=h = 0

% (
ν|∇v|2 + v · (∇ust) · v

)
d3x. (27)

DeÞne the functional

F [v] =
% !

ν|∇v|2 + v · (∇ust) · v − 2p(x)∇ · v − λ
#
|v|2 − 1

Ah

$"
d3x. (28)
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Upon variation with respect to v we obtain the eigenvalue problem

λv = −ν∆v+∇p+ (∇ust) · v. (29)

The region in the Re�a phase plane where the lowes eigenvalue is positive deÞnes the
parameter region of energy stability of plane Couette ßow. In applications to bound other
solutions we need to generalize the method described in this section and this is done next.

3 �Background� Method

In the previous section we saw that the stationary solution (9) only exists as an absolutely
stable solution for sufficiently low Reynolds numbers. For high Reynolds numbers we can
not use it to put an upper bound on the energy dissipation rate. However, we are going to
present a more general technique that mimics to some extent what we did in the previous
section.

Decompose a general solution of the Navier-Stokes equation as

u = iU(y) + v(x, t). (30)

We call the vector Þeld iU(y) a �background� Þeld. The other part of the decomposition
is a �ßuctuating� Þeld. The purpose of the background 1 Þeld is to �absorb� the boundary
conditions, whereas the ßuctuating part satisÞes homogeneous boundary conditions:

U(0) = 0, U(h) = U∗, v|y=0 = v|y=h = 0. (31)

Next, from (1) and (30) we derive

∂tv + v ·∇v + U(y)∂xv + i v2U $(y) +∇p = ν∆v + i νU $$(y) (32)

and for the ßuctuation energy evolution

d

dt

1

2

%
|v|2 d3x = −ν

%
|∇v|2 d3x−

%
U $(y)v1v2 d3x− ν

%
U $(y)

∂v1
∂y

d3x. (33)

As before, note that ∇u = ∇v + jiU $(y) and derive

1

2
ν

%
|∇u|2 d3x = 1

2
ν

%
|∇v|2 d3x+ A

2
ν

% h

0
u$(y)2 dy + ν

%
U $(y)

∂v1
∂y

d3x. (34)

Adding (33) and (34) we get

1From now on we drop the quotes on the words background and ßuctuating but we should keep in mind
that the background Þeld is not (necessarily) a mean ßow.
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d

dt

%
|v|2 d3x+ ν

%
|∇u|2 d3x = −

% (
ν|∇v|2 + 2U $(y)v1v2

)
d3x+Aν

% h

0
U $(y)2 dy. (35)

The terms in the formula above can be identiÞed as follows. The second term on the left-
hand side is the total instantaneous dissipation rate, the second term on the right-hand side
is the dissipation rate in the background ßow, and the Þrst term on the right-hand side is
a quadratic form which we denote by Qu{v}.

The key point is: If we can Þnd a background proÞle U(y) so that QU{v} > 0, i.e., so
that QU{v} ≥ c

, |v|2 d3x with c > 0, then
a) We are convinced that the kinetic energy is uniformly bounded in time (even as

t→∞) because then

d

dt

%
|v|2 d3x ≤ −c

%
|v|2 d3x+Aν

% h

0
U $(y)2 dy, (36)

from where after integrating, we deduce

%
|v|2 d3x ≤ e−ct

%
|v(x, 0)|2 d3x+ 1

c

(
1− e−ct)Aν % h

0
U $(y)2 dy; (37)

b) The background ßow produces an upper bound on &, for then the time averaged
equation (35) gives

& =
&
ν|∇u|2' ≤ 1

h

% h

0
U $(y)2 dy. (38)

3.1 Trial background Method

Lets take the background proÞle to be the piecewise-linear velocity proÞle given by the one
shown in the Fig. 2. We can make the following estimate: using the fundamental theorem
of calculus and the Cauchy-Schwarz inequality:

|vi| =
----% y

0

∂vi
∂y
(y$)dy$

---- = ----% y

0
1 · ∂vi
∂y
(y$)dy$

---- ≤ √y
-----
% y

0

#
∂vi
∂y
(y$)

$2
dy$
-----
1/2

. (39)

This implies----% h

0
U $(y)v1v2dx3

---- ≤ U∗
2δ

%
dxdz

% δ

0
y

2% h/2

0

#
∂v1
∂y

$2
dy$
31/22% h/2

0

#
∂v2
∂y

$2
dy$
31/2

dy+

U∗
2δ

%
dxdz

% h

h−δ
(h− y)

2% h

h/2

#
∂v1
∂y

$2
dy$
31/22% h

h/2

#
∂v2
∂y

$2
dy$
31/2

dy. (40)
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Figure 2: Trial function for the background proÞle.

Including all the other terms in |∇v|2 we obtain----% U $(y)v1v2dx3
---- ≤ U∗

2δ

δ2

2

1

2

%
|∇v|2dx3 = U∗δ

8

%
|∇v|2dx3. (41)

This implies for Q :

QU{v} =
% (

ν|∇v|2 + 2U $v1v2
)
dx3 ≥

%
ν|∇v|2dx3 − 2

----% U $v1v2dx3
----

≥
%
ν|∇v|2dx3 − U∗δ

4

%
|∇v|2dx3 ≥

#
ν − U∗δ

4

$%
|∇v|2dx3 ≥ π2

h2

#
ν − U∗δ

4

$%
|v|2dx3.

(42)

So QU{v} ≥ 0 if we choose δ ≤ 4ν/U∗ = 4h/Re. This is the maximum value of δ that our
estimates allow us to use, and gives a bound on the maximum possible energy dissipation
rate for the set of background functions U that we have chosen. Using this value of δ we
obtain

& ≤ ν

h

% h

0
U $(y)2dy =

1

8

U3∗
h

⇒ β ≤ 1

8
(43)

4 Variational Problem for Optimal Background

We can pose the following question: What is the optimal background velocity proÞle that
gives the smallest possible bound

& ≤ min
U

4
1

h

% h

0
νU $(y)2dy

5
. (44)
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under the constraints QU{v} ≥ 0, U(0) = 0 and U(h) = U∗, where

QU{v} =
% 6

ν|∇v|2 + 2v1v2U $(y)
7
dx3. (45)

The constrain QU{v} ≥ 0 is equivalent to the spectral constraint λU ≥ 0 where

λU = min
v

, 6
ν|∇v|2 + 2v1v2U $(y)

7
dx3, |v|2dx3 (46)

under the constraints ∇ ·v = 0 and v = 0 at y = 0, h. λ is equal to the lowest eigenvalue of
λv = −ν∆v +∇p+ iU $(y)v2 + jU $(y)v1 (47)

∇ · v = 0. (48)

We can then substitute the QU (v) ≥ 0 in (44) constraint with λU ≥ 0

4.1 The Geometry of the Spectral Constraint

Let U $(y) = U∗/h+ φ(y) so that
, h
0 φ(y)dy = 0. Then equation (38) can be written as

& ≤ min
φ

!
ν
U2∗
h2
+
ν

h

% h

0
φ(y)2dy

"
(49)

with the constraints
, h
0 φdy = 0 and λφ ≥ 0 where we replace the label U with φ in the

spectral constraint. There is one remark we want to make for the above minimization
problem:

The set of functions φ(y) with λφ ≥ 0 is convex
Proof:
Concider two mean-zero functions φ1(y) and φ2(y). Then

λφ1 ≥ 0⇔ For every �u,

% #
ν

2
|∇�u|2 +

#
U∗
h
+ φ1(y)

$
�u1�u2

$
dx3 ≥ 0 (50)

and

λφ2 ≥ 0⇔ For every �u,

% #
ν

2
|∇�u|2 +

#
U∗
h
+ φ2(y)

$
�u1�u2

$
dx3 ≥ 0. (51)

Now let 0 < a < 1. Using linearity in φ and the hypothesis that λφ1 ≥ 0 and λφ2 ≥ 0 we
see that

% #
ν

2
|∇�u|2 +

#
U∗
h
+ aφ1(y) + (1− a)φ2

$
�u1�u2

$
dx3 ≥ 0⇔ λaφ1+(1−a)φ2 ≥ 0. (52)

This proves that the set Φ = {φ|λφ > 0} is convex. A sketch of the set Φ is shown in Þgure
3, where the curve indicates the functions φ(y) that have λφ = 0.
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4.2 Euler-Lagrange Equations for Optimal φ

It is clear from Fig. 3 that the condition for the unique minimizing φ (the φ closest in norm
to φ = 0) is

φ(y) = γP
4
δλφ
δφ

5
(53)

where P stands for projection onto mean zero function space. (The vector φ that is the
minimum must be parallel to the gradient of λφ at λφ = 0.) The proportionality factor γ is
a Lagrange multiplier. To evaluate δλ/δφ we begin from (48):

λv = −ν∆v +∇p+ i(U∗ + φ)v2 + j(U∗ + φ)v3. (54)

A change in φ to φ+δφ implies a change in λ to λ+δλ and a change in the eigenfunction
v to v + δv. To Þrst order

δλv + λδv = −ν∆δv +∇δp+ i(U∗ + φ)δv2 + j(U∗ + φ)δv3 + δφ(iv2 + jv3). (55)

Take the dot product with the original eigenfunction v and note that (using
, |v|2dx3 =

1,

δλ =

%
δφ2v1v2dx

3 = A

% h

0
δφv1v2dy (56)

so that

δλ

δφ
(y) = 2Av1v2(y) (57)

where we introduced the overbar for the horizontal average over x and z. The projection
then in (53) then gives

φ(y) = γ(v1v2(y)− ,v1v2-) (58)

where the 2A factor has been absorbed into the Lagrange multiplier.
The nonlinear equations we are therefore called to solve for the optimal bound are

0 = −ν∆v +∇p+ i(U
∗

h
+ φ)v2 + j(

U∗

h
+ φ)v1 (59)

0 = ∇ · v (60)

φ = γ(v1v2 − ,v1v2-) (61)

where γ is determined by the normalization condition
, |v|2dx3 = 1.

We also have to note that γ is a scalar only if the isospectral surface λφ = 0 is
smooth.
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δφ
δλ
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δλδλ
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P

P
P

λ  =0φ

Figure 3: The space Φ. The curve denotes where λφ = 0.

4.3 Structure of the Optimal Bound

Here we describe a general formulation of the Euler-Lagrange equations (61). The transla-
tion invariance in the (x− z) plane allows us to write v as

v =
8
α

�v(α)(y)ei(αxx+αzz), (62)

where α = iα1 + jα2 and the incompressibility condition now gives ∂y�v2 + iα · �v = 0. We
can write Qφ as

Qφ{v} =
8
α

Q
(α)
φ

9
�v(α)(y)

:
(63)

where

Q
(α)
φ {�v} = A

% h

0

;
ν

----d�vdy
----2 + |α|2|�v|2 + #U∗h + φ(y)

$
(�v1�v

∗
2 + �v

∗
1�v2)

<
dy (64)

Since we want Qφ to be positive we must demand

Q
(α)
φ ≥ 0 ∀α (65)

Note that if we drop the incompressibility condition |α1| < |α2| would imply Q(α1) < Q(α2)
which does not generally hold for the incompressible case. The set of zero mean functions
with positive λ can now be written as

Φ =
9
φ
--λφ ≥ 0: = ∩α9φ--λ(α)φ ≥ 0:. (66)

4.3.1 Single Wavenumber Case (Smooth)

First we examine the simplest possible case where the minimum bound comes from a single
mode with wave number α. (See Fig. 4) The optimal φ is given by

φ(y) = γ0
4
�v
(α)
1 (y)�v

(α)
2 (y) ∗ −1

h

% h

0
�v
(α)
1 (y$)�v(α)2 (y$)∗dy$

5
(67)

and the equations that �v must satisfy are:
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Figure 4: The space Φ in the case that the minimum φ is given by a single mode.

0 = −ν∆�v(α) +∇p+ i(U
∗

h
+ φ)�v

(α)
2 + j(

U∗

h
+ φ)�v

(α)
1 (68)

0 = ∇ · �v(α) (69)

1 =

%
|�v(α)|2d3x (70)

4.3.2 Two Wavenumber Case

The next case we examine is when the minimum is obtained at the intersection of the curves
λ
(α1)
φ = 0 and λ

(α2)
φ = 0. (See Þgure 5.)

The optimal φ in this case is given as a linear combination of P(δλ1/δφ) and P(δλ2/δφ)

φ(y) = γ10
4
�v
(α1)
1 (y)�v

(α1)
2 (y) ∗ −1

h

% h

0
�v
(α1)
1 (y$)�v(α1)2 (y$)∗dy$

5

+γ20
4
�v
(α2)
1 (y)�v

(α2)
2 (y) ∗ −1

h

% h

0
�v
(α2)
1 (y$)�v(α2)2 (y$)∗dy$

5
(71)

where γ1 and γ2 are to be determined from the normalization conditions and each �v(αi)

must obey (70).

4.3.3 General Situation

For the more general case the solution will be given by

φ(y) =

N8
n=1

γn0
4
�v
(αn)
1 (y)�v

(αn)
2 (y) ∗ −1

h

% h

0
�v
(αn)
1 (y$)�v(αn)2 (y$)∗dy$

5
(72)
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1

Figure 5: The space Φ in the case that the minimum φ is given by two modes.

where each �v(αn) satisÞes

0 = −ν∆�v(αn) +∇p+ i(U
∗

h
+ φ)�v

(αn)
2 + j(

U∗

h
+ φ)�v

(αn)
1 (73)

0 = ∇�v(αn) (74)

1 =

%
|�v(αn)|2d3x (75)

and all the γn are given by the normalization condition.

4.4 Results and Reality

Fig. (6) summarizes the results that have been obtained by solving the Euler Lagrange
equations. The straight line ∼ Re−1 gives the results of the laminar ßow which is an absolute
minimum. For higher Re the energy dissipation rate in the ßow is bounded from above by
the curve shown in the Þgure. The crosses represent experimental measurements on a
turbulant shear layer. The experimental results still show a weak (logarithmic) dependence
on the Reynolds number which is not captured by the bounding method. Perhaps further
physical information given to the analysis would improve the bound. (We note that the
graph is just a sketch.)
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Figure 6: A sketch of the bound and the experimental data.
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