
Lecture 7

Multi-α-Solutions
F. H. Busse

Notes by L. Lu and F. Petrelis

1 Introduction

In the previous lecture, the Rayleigh-Bénard convection in a porous media is discussed
and the problem of Þnding the upper bound of convective heat transport is formulated
as a variational problem. In this lecture, we will try to solve this variational problem
using the multi-α-solution technique. An explicit bound of the Nusselt number will be
obtained by the multi-boundary-layer approximation method. Then the extremalizing Þelds
of the variational problem will be compared to those observed in turbulent ßows. Finally,
the convection in a rotating layer is studied in a similar way. The extremalizing Þelds of
the corresponding variational problem are found by solving the Euler-Lagrange equations
numerically.

2 Multi-α-Solutions

From previous lecture, the variational problem is:
Given µ > 0 Þnd the minimum of the functional

P(u, θ, µ) = < |u|2 >< |∇θ|2 > +µ < |wθ− < wθ > |2 >
< wθ >2

, (1)

among the u, θ Þelds with

∇ · u = 0, w|z=± 1
2
= θ|z=± 1

2
= 0, (2)

where
w = u · �k.

With the general representation for a solenoidal vector Þeld,

u = ∇× (∇× �kφ) +∇× �kψ, (3)

and the ansatz

w = w(N) ≡
N!
n=1

α
1
2
nwn(z)φn(x, y) (4a)

θ = θ(N) ≡
N!
n=1

α
− 1
2

n θn(z)φn(x, y) (4b)

where the functions φn(x, y) satisfy the equation

∆2φn = −α2nφn, (4c)
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the functional to be minimized becomes

P(N)(θn;αn, µ) ≡
I2 + µ <

"#
ν θ

2
ν −

#
ν < θ

2
ν >

$2
>#

ν < θ
2
ν >

2
n = 1, 2, 3, . . . , N (5)

where

I ≡
N!
ν=1

1

αν
< θν

"2 > +αν < θ2ν > (6)

See previous lecture notes for more details of the derivation of the functional and its physical
meaning.

2.1 Asymptotic Analysis of Minimum of P(N)(θn;αn, µ)
It is difficult to Þnd an analytic solution of the Euler-Lagrange equations correponding to
the variational problem (1) in closed form. Thus we attempt to seek its asymptotic solution
as µ→∞. To start, it is convenient now to change the normalization condition to

N!
ν=1

< θ2ν >= 1 (7)

And also we assume that the wave numbers αn are ordered: αN > αN−1 > · · · > α1. In
the asymptotic case of large µ it is obvious that in order to minimize the functional P ,
the minimizing solution

#
ν θ

2
ν must approach unity as closely as possible throughout the

interval −1
2 < z < 1

2 . Only near the boundaries z = ±1
2 the boundary conditions (2)

prevent a close approach. However a rapid increase from 0 to 1 near the boundary makes
θ"n large, and consequently I2 increases. But this growth can be moderated by assigning
the sharpest growth rate to θN , which is divided by the largest wave number αN . In the
expression of I2, θN is multiplied by αN . Thus θN has to decrease rapidly to 0. Otherwise
the large wavenumber would make I2 grow even though the θ"N term is small. To satisfy the
condition θ2N + θ

2
N−1 ≈ 1, the increasing part of θN−1 must match the decreasing region of

θN . In summary, θN increases in a layer of thickness of order O(µ
−rN ), and decreases to 0 in

the region of order O(µ−rN−1), which is the increasing part of θN−1. This hierarchy (shown
shematically in Fig (1)) continues until θ1 = 1 Þlls the region outside all the boundary layers
of the rest θn.

Thus we introduce two variables �θ and �θ corresponding to the rising and falling regions
respectively,

θn(z) =

%
�θ(ζn) for |z ± 1

2 | ≈ O(µ−rn),
�θ(ζn−1) for |z ± 1

2 | ≈ O(µ−rn−1),
(8)

where

ζn ≡ |z ± 1
2
|µrn (9)
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Figure 1: Qualitative sketch of the boundary layer structure of the extremalizing N-α-
solution, in the case of convection in a porous layer, w = θ.

near z = ±1
2 and where

�θ2n +
�θ2n+1 ≈ 1 for z ≈ O(µ−rn), and n = 1, 2, . . . , N − 1, (10)

�θ21 ≈ 1 for z ≈ O(1) = O(µ−r0). (11)

The matching condition is:

�θn(ζn)|ζn→ζ(m)n
= �θn(ζn−1)|ζn−1→0 = 1, (12)

where the supcript (m) means matching point. The boundary conditions for �θn and �θn are:

�θn(0) = 0, �θn(∞) = 0. (13)

The relations

< θ"mθ
"
n >= αmαn < θmθn > (14)

yield

α2n =
< θn

"2 >
< θ2n >

≈ µrn+rn−1
& ζ(m)n

0
�θn
"2dζn&

(1− �θ2n)dζn−1
≡ µrn+rn−1b2n, for n = 2, 3, . . . , N, (15a)

α21 = µ
r12

' ζ
(m)
1

0

�θ"2dζ1 ≡ µr1b21. (15b)

Thus the boundary-layer approximation of the functional P(N)(θ;µ) becomes

P(N)(θ;µ) = I2 + 2µ1−rN
' ∞

0
(1− �θ2N)2dζN , (16a)
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where

I = µ
r1
2 b1 +

N!
n=1

µ
rn−rn−1

2

(
1

bn

' ζ
(m)
n

0

�θn
"2dζn + bn

' ∞

0
(1− �θ2n−1)∗dζn−1

)
, (16b)

and where the term labelled with (*) vanishes when n = 1. The minimum of the functional
P(N) as a function of r1, r2, . . . , rN is reached when the partial derivatives with respect to
each r vanish. This yields:

r1 = r2 − r1 = · · · = rn − rn−1 = · · · = rN − rN−1 = 1− rN .

Then

rn =
n

N + 1
for n = 1, 2, . . . , N. (17)

Accordingly,

P(N)(θ;µ) = µ 1
N+1

*
�I2 + 2

' ∞

0
(1− �θ2)2dζN

+
(18)

where

�I = b1 + 2
N!
n=1

*
1

bn

'
�θn
"2dζn + bn

'
(1− �θ2n−1)∗dζn−1

+
. (19)

The Euler-Lagrange equations corresponding to a stationary value of the functional above
can be written as

�θ""n + bnbn−1�θn = 0 for n = 1, 2, . . . , N − 1, (20a)

�I �θ""N + bN(1− �θ2N)�θn = 0. (20b)

The solutions of these equations satisfying the boundary conditions (13) and matching
condition (12) are

�θn = ± sin(bnbn+1) 12 ζn for 1 ≤ ζn ≤ π

2
(bnbn+1)

1
2 , (21a)

�θN = ± tanh(bN
2�I
)
1
2 ζN . (21b)

where the matching point has been chosen to be ζ
(m)
n = π

2 (bnbn+1)
1
2 . Now the constants bn

can be computed by using their deÞnitions (15):' ζ
(m)
n

0

�θn
"2dζn =

π

4

,
bnbn+1,' ζ

(m)
n

0
(1− �θ2n)dζn =

π

4
(bnbn+1)

− 1
2 .
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And we obtain:

b2n = bn(bn+1bn−1)
1
2 for n = 2, 3, . . . , N − 1

b21 =
π

2

,
b1b2

b2N =
8

3π

-
bN−1
2�I

Thus

bn =
π

2

.
8

3π2
√
N

/ 2n−1
N+1

for n = 1, 2, . . . , N, (22a)

�I = 2Nb1. (22b)

And Þnally

P(N)(µ) ≡ minP(N)(θ;µ) = µ 1
N+1N(N + 1)4b21 = N(N + 1)π2

.
64µ

9π4N

/ 1
N+1

(23)

A comparison of the numerical computation of the extremalizing functions of the exact
Euler-Lagrange equations and the asymptotic results is shown in Fig (2). They agree very
well. The upper bound of Nu in Rayleigh-Benard convection by multi-α-solution approach

Figure 2: The two-α-solution at R = 50π2. Numerical computations(solid lines) are com-
pared with the results (21) and for θ1, θ2 from the boundary layer theory.

is shown in Fig (1) in [1] and compared with experimental results. The result (23) shows
that the minimum of P(µ) among the class of functions {P(N)(µ)} is assumed sequentially
by N = 1, 2, . . . as µ increases. The results of Busse and Joseph (1972) [2] indicate that
the transition occurs in the form of a bifurcation in which the (N + 1)th component of the
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solution Þrst appears as a small perturbation in the N th boundary layer of the N -α-solution.
As a result the bound P (µ) appears as a smooth curve without kinks. This structure of
the upper bounds is shown in Fig (3) where the upper bound of heat transfer is computed
numerically for Rayleigh-Benard convection with stress-free boundary conditions [3]. Also

Figure 3: The upper bound µ as a function of R in the case of 1-α- (Þlled circles), 2-α-
(open squares) and 3-α-solutions (crosses). For comparison the upper bound obtained by
Howard (1963) [4] without the constraint of continuity equation (dotted line) and numerical
values obtained by Moore and Weiss (1973) [5] for 2-dimensional convection rolls with the
Prandtl number P = 6.8 (dashed line) are shown. The inset enlarges the part 2 × 106 <
R < 2.6×106, 1.5×108 < µ < 2.2×108 of the graph in order to indicate the small difference
between results for N = 2 and N = 3. (From [3])

noticed is the boundary layer structure in this free-stress boundaries system as shown in
Fig (4). The function wθ/ < wθ > for the 2− α solution is close to unity over most of the
interval, and only decreases sharply toward the z = ±1

2 boundaries. The narrower boundary
layer corresponds to larger wavenumber as can be seen from the curves for w2θ2/ < wθ >
For this same system, Fig (5) shows the extremalizing w1, w2, w3 functions corresponding
to the 3-α-solution.

2.2 Similarities Between Extremalizing Vector Fields and Observed Tur-
bulence

The extremalizing vector Þelds of the upper bound problems have in common with the
observed turbulence that the wavenumber spectrum broadens as the N-α-solution is replaced
by (N + 1)-α-solution. But the spectrum of the extremalizing Þeld is discrete while that
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Figure 4: The functions wθ/ < wθ > (solid lines),w1θ1/ < wθ > (dotted lines) and w2θ2/ <
wθ > (dashed lines) in the case of the 2 − α-solution for R = 5 × 104 (labelled by 1) and
5× 105 (labelled by 2). The slight wiggles exhibited by the function wθ near the boundary
for R = 5× 105 are caused by the limited numerical resolution. (From [3])

Figure 5: The function w1(z) (solid line), w2(z) (dashed line) and w3(z) (dotted line) of
the 3− α−solutions for the Rayleigh numbers R = 106, 1.25× 106, 1.5× 106, 2× 106 (from
bottom to top). (From [3])
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of the actual turbulence Þeld is continuous. Since the N-α solution for the extremalizing
vector Þeld provides the upper bound only in a Þnite interval of the control parameters, the
assumption of an inÞnite ratio between thicknesses of successesive boundary layers is not
well satisÞed. It turns out that this value assums e2 in the case of solutions (23) for large
n,N and the value 4 for other cases of upper bound problems that have been studied. The
proÞle of the extremalizing Þelds of turbulent shear ßows thus have the form sketched in
Fig (6).

Figure 6: Qualitative sketch of the nested boundary layers which characterize the vector
Þeld of maximum transport. The proÞle of the mean shear ßow is shown on the right side.

Generally, with increasing control parameter (e.g. Ra in Rayleigh-Bénard convection)
the number of wavenumbers needed for the extremalizing multi-α-solutions increases cor-
respondingly. The transition of N -α-solutions to (N + 1)-α-solutions exhibits a structure
similar to bifurcation. In Rayleigh-Benard convection at high Prandtl number, the tran-
sition from convection rolls to bimodal convection occurs at the Rayleigh number of the
order 2×104, the same as from the 1-α-solution to the 2-α-solution. This bifurcation struc-
ture is also illustrated in Fig (7), which shows the transitions from the 1-α-solution to the
2-α-solution, and from 2 to 3 in a ßuid layer heated from bellow with stress-free boundary
conditions. This bifurcation structure of the extremalizing vector Þelds is a consequence
of the property that eddies with an increasing number of length scales are needed to ac-
complish an optimal transport as the control parameter (Rayleigh number in convection)
increases.

The proÞles of averaged temperature and velocity Þelds are relatively easier to be mea-
sured experimentally in a turbulent ßow. Thus it is of interest to compare the measuered
proÞles with the proÞles corresponding to the extremalizing vector Þelds. The mean velocity
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Figure 7: The wavenumbers α
(i)
j , j = 1, . . . , i, i = 1, 2, 3 of the extremalizing solutions as a

function of R. (From [3])

proÞle in plane Couette ßow is compared with the extremalizing Þeld in Fig (8). The as-
ymptotic proÞle of the extremalizing solution matches the velocity proÞle at high Reynolds
number (R = 68000) very well in the middle of the interval except near the boundary. In
fact the boundary layer thickness tends to zero only when R → ∞. A Þnite R = 68000
exhibits a Þnite boundary layer thickness as shown in the Þgure. Because of the turbulent
mixing one tends to expect that the mean shear or mean temperature gradient is zero ex-
cept around the boundaries where the velocity or temperature gradient is large. Indeed,
experiments on turbulent convection in ßuid layers heated from bellow as well as in the case
of the vector Þeld extremalizing the heat transport an isothermal interior is found when the
averages over plane z =constant are taken. Surprisingly this property does not hold true
in the case of a shear layer as shown in Fig (8). The extremalizing Þeld does not need the
drop of half of the velocity difference between the plates across the boundary layers in order
to accomplish an optimal transport. Only 3/8 are required. Another example, the angular
momentum transport by turbulent ßow between differentially rotating coaxial cylinders, is
shown in Fig (9). The extremalizing solution Þts the experimental data even better than
the logarithmic layer model [7].

The set of discrete wavenumbers characterizing the extremalizing vector Þeld appears to
be the most artiÞcial feature when compared to the broad continuous wavenumber spectrum
observed in turbulent ßows. However, patterns of coherent structures in fully developed tur-
bulences are very difficult to measure in laboratories. The ßuctuations measured at a single
point as a function of time which are interpreted as ßuctuations in space via the Taylor hy-
pothesis will usually generate a continuous spectrum even if, for instance, a perfect pattern
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Figure 8: The mean velocity proÞle in plane Couette ßow measured by Reichardt (1959)
at Re = 2400(◦), Re = 5800(×), Re = 11800(+), andRe = 68000(∆). The straight line de-
scribes the asymptotic proÞle corresponding to the extremalizing solution of the variational
problem [From [6]].
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Figure 9: Measurements(+) by Smith and Townsend (1982) [8] of the angular momentum
density, rU(r), normalized by the angular momentum of the inner cylinder, Ωir

2
i , in com-

parison with the proÞle of a logarithmic layer model (solid line) (Lathrop et al, 1992 [7])
and with the proÞle of the extremalizing vector Þeld in the limit of high Reynolds numbers
(dashed line). A stationary outer cylinder with a radius ratio η = 0.667 has been used
(After Busse, 1996 [9]).
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of hexagons is advected by a mean ßow. Few experiments can provide an instantaneous
view of the two-dimensional structure of turbulence. Through the shadowgraph visualiza-
tion technique [10], such a view can be obtained in the case of turbulent convection in a
ßuid layer heated from bellow. It is thus not surprising that a nearly stationary network of
convection cells can be discerned in turbulent convection at a Rayleigh number of several
106. Measurements of spectral peaks that can be compared with the discrete scales of the
extremalizing Þelds have been obtained as shown in Fig (10). More detailed comparisons
appear to be possible when numerical simulations of convection with sufficiently large hori-
zontal periodicity intervals are carried out. Another property shared by extremalizing Þelds
for different turbulent ßows is shown in Fig 11, where the structures of shear ßow boundary
layers and of thermal boundary layers in convection are identical when scaled properly.

Finally, additional constraints will restrict the manifold of admissible vector Þelds in the
variational problems and will lead to improved bounds.

3 Convection in a Rotating System

The geometry of this problem is shown in Fig (12). The length scale is d, time scale d
2

κ and

temperature T2−T1
R . The dimensionless governing equations are:

P−1
.
∂

∂t
+ u ·∇

/
u = −∇π + �kΘ+∇2u− 2Ω× u (24)

∇ · u = 0 (25)

∂

∂t
Θ+ u ·∇Θ = Ru · �k+∇2Θ (26)

where

R =
γ(T2 − T1)gd3

γκ
, (27)

P =
ν

κ
, (28)

Ω = �kΩ = �k
Ω0d

2

ν
. (29)

Assume the turbulence is stationary, and thus

Θ = Θ̄+ ÿΘ, with �̄Θ = 0. (30)

As usual, the over bar denotes a horizontal average over the plane z = constant. By taking
the horizontal average of the temperature equation (26), we have

d

dz
Θ̄ = uz ÿΘ− < uz ÿΘ > (31)

Using the general representation of a solenoidal Þeld,

u = ∇× (∇Φ× �k) +∇Ψ× �k = δΦ+ "Ψ, (32)
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Figure 10: Three graphs of the normalized cospectra of w and θ, observed by Deardorff
and Willis (1967) [11] at Rayleigh numbers 6 × 105, 2.5 × 106, 1.0 × 107 respectively, are
plotted on top of a Þgure showing l

(N)
1 ≡ 2π/α(N)1 as a function of the Rayleigh number for

N = 2, 3, 4. The three graphs have been arranged in such a way that the Rayleigh numbers
of both plots coincide approximately at the level where the secondary maxima appear in
the cospectra.
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Figure 11: Root mean squre (r.m.s) values of the ßuctuating components of the velocities
in the streamwise direction, �ux/Uτ , and normal to the wall, �w/Uτ , measured by Laufer
(1954) [12] at Re = 2.5 × 105(x) are compared with the r.m.s. values of the temperature
ßucuations �θ and of the vertical velocity �w measuered in turbulent thermal convection by
Deardorff and Willis(1967) [11]. The latter values have been obtained for Ra = 2.5 ×
106(◦) and Ra = 2.5× 107(!) are plotted in units resulting from the correspondence of the
variational problems (after Busse, 1970)

x

yz
Ω

d

g

Figure 12: Geometry of convection in a rotating ßuid layer.
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we obtain:

∇4∆2Φ+ 2Ω∇∆2Ψ−∆2 ÿΘ = P−1
.
∂

∂t
∇2∆2Φ+ δ · (u ·∇u)

/
, (33)

∇2∆2Ψ− 2Ω ·∇∆2Φ = P−1
.
∂

∂t
∆2Ψ+ " · (u ·∇u)

/
, (34)

∇2 ÿΘ−R∆2Φ+∆2Φ d
dz
Θ̄ = u ·∇ÿΘ− u ·∇ÿΘ+ ∂

∂t
ÿΘ. (35)

Then we are able to derive the following power integrals for stationary turbulent convection:

< |�k×∇∇2Φ|2 > +2Ω < ∆2Φ ∂
∂z
Ψ > + < ÿΘ∆2Φ > = P

−1 < δΦ · [(δΦ+ "Ψ) ·∇],Ψ >,
(36)

< |�k×∇∇2Ψ|2 > −2Ω < ∆2Φ ∂
∂t
Ψ > = P−1 < ,Ψ[(δΦ+ ,Ψ) ·∇]δΦ >,

(37)

< |∇ÿΘ|2 > + < |∆2ΦÿΘ− < ∆2ΦÿΘ > |2 > = R < −∆2ΦÿΘ > . (38)

With these power integrals, the variational problem is formulated as follows:
For given values of the parameters P , τ and µ > 0 Þnd the minimum R(µ, P, τ) of the
variational functional

R(Φ∗,Ψ∗,Θ∗;µ, P, τ) = R1 + λ
.
R2 +

√
µ

P
R3
/

(39)

among all Þelds Φ∗, Ψ∗, Θ∗ satisfying the conditions

Φ∗ =
∂2Φ∗

∂z2
=
∂Ψ∗

∂z
= Θ∗ = 0, at z = ±1

2
. (40)

In the above expression

R1 ≡ (< |�k×∇∇Ψ∗|2 > + < |�k×∇∇2Φ∗|2 >) < |∇Θ∗|2 > +µ < (Θ∗∆2Φ∗− < Θ∗∆2Φ∗ >)2 >
< Θ∗∆2Φ∗ >2

,

(41a)

R2 ≡
< |�k×∇∇Ψ∗|2 > −τ < ∆2Φ∗ ∂Ψ∗∂z >

< |�k×∇∇Ψ∗|2 > + < |�k×∇∇2Φ∗|2 >, (41b)

R3 ≡ < ,Ψ∗ · [(,Ψ∗ + δΦ∗) ·∇]δΦ∗ >
[< |�k×∇∇Ψ∗|2 > + < |�k×∇∇2Φ∗|2 >]3/2 . (41c)

The functional is homogeneous in Θ and in (Φ,Ψ). Hence the normalization

µ = − < Θ∆2Φ >=< |�k×∇∇Ψ|2 > + < |�k×∇∇2Φ|2 > (42)
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can be imposed. To solve this variational problem, the following ansatz is introduced:

Φ =

N!
p=1

φp(x, y)Ap(z), (43a)

Ψ =

N!
p=1

φp(x, y)Bp(z), (43b)

Θ =

N!
p=1

φp(x, y)Tp(z), (43c)

where the boundary conditions for Φ, Ψ and Θ can be satisÞed by the choice

Ap =

M!
q=1

apq sin qπ

.
z +

1

2

/
, (44a)

Bp =

M!
q=1

bpq cos qπ

.
z +

1

2

/
, Tp =

M!
q=1

tpq sin qπ

.
z +

1

2

/
, (44b)

for the z-dependence.
Then the time independent Euler-Lagrange equations are solved numerically to Þnd

the stationary state of the functional R(µ, P, τ). Two types of solutions are tried. One
of them is two-dimensional rolls, in which case a single wavenumber (N = 1 in (43)) is
assumed [13]. Since the P dependence disappears in the Euler-Lagrange equations in the
two dimensional case, to investigate the role of P in determining the upper bounds, three-
dimensional hexagonal solutions are considered (N ≤ 5) [13]. The Euler-Lagrange equations
used here are time independent, which provide the upper bound of the heat transport by
turbulent convection. Thus we don�t observe the onset of convection in the form of coherent
oscillation bellow the critical Rayleigh number when the Prandtl number P is low enough.

The extremalizing Þelds of the two-dimensional roll and three-dimensional hexagon are
shown in Fig (14) and Fig (13). The boundary layer can be seen to form in the roll
solution (Fig (14) with increasing Rayleigh number with Þxed τ2. In order to maximize the
convective heat transport the function Π = θ∆2φ/ < θ∆2φ > must approach a constant
value in the interior of the layer while keeping its rise from zero at the boundaries sufficiently
smooth such that the dissipation of the ßucuating variables does not contribute too much
in the functional (3). This tendency is clearly seen in Fig (15) as the boundary layer forms.
The three-dimensional hexagon solution has asymmetric components as is clearly evident in
the z-dependences of A1(z) and T1(z) in Fig (13). The asymmetry increases with decreasing
Prandtl number P and with increasing R.

Finally, the upper bound on the heat transport is shown in Fig (16). The Þgure shows
that the upper bound of convective heat transport by hexagon solutions extends to bellow
the critical Rayleigh number Rac, which is indicated by the vanishing of the maximum
convective heat transport by the roll solutions. This point is particularly evident in for
the τ2 = 104 and P = 0.0247 case. But at Ra not far beyond the critical value, the heat
transport by roll solution already exceeds the hexagon solution. This subcritical extent of
the hexagon upper bound is not quite so dramatic for lower τ2 values.
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Figure 13: The z-dependences T1(z) (solid line, left ordinate) and A1(z) (dashed lines,
right ordinate) for the etremalizing hexagon solution in the case R = 3000, P = 1 for
τ2 = 500, 750, 1000, 1250, 1500, 2000 (from top to bottom)
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Figure 14: The z-dependence of the extremalizing Þelds θ (solid line, left ordinate) and ψ
(dashed lines, right ordinate) of the roll solution for τ2 = 500 in the cases R = 2× 103, 3×
103, 4× 103, 5× 103, 7.5× 103, 104, 1.25× 104 (from top to bottom)
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Figure 15: The function
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Figure 16: The upper bound µ for the convective heat transport by the hexagon solution
for P = 0.1(0.0247) indicated by a dash-double-dotted (double-dotted) line for τ2 = 1500)
and a short(long) dashed line for τ2 = 1500. The thin solid line indicates the upper
bounds for P = 0.0247 and τ2 = 104. For comparison the upper bounds given by rolls for
τ2 = 500, 1500, 104 are indicated by the thin dotted line, the thick dotted line and the thick
solid line, respectively
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