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Notes by by L. Lu and F. Pétrélis

1 Description of the Rayleigh Bénard instability

1.1 Mechanism

When a ßuid layer is heated from below, a ßuid particle at the bottom of the layer is hotter
than the one above her. Consequently it is lighter and has a tendency to go up which is
slowed down by the viscous force. This is the mechanism of the Rayleigh Bénard instability
which can generate convection movements in a ßuid heated from below. By comparing the
power of the two forces involved in this mechanism, we can get an idea of a parameter which
controls the instability development.

We Þrst have to specify how the density ρ of the ßuid depends on its temperature. The
simplest hypothesis is to use a Þrst order approximation and to assume a linear dependency
that yields

ρ = ρ0 (1− γ(T − T0)) , (1)

where ρ0 is the density at temperature T0 and γ is the expansion coefficient

γ =
1

V

∂ V

∂ T P
= −1

ρ

∂ρ

∂T p
. (2)

This is part of the Boussinesq approximation, pertinent for almost all common cases of
Rayleigh Bénard instability.

We can estimate the buoyancy force Fb per unit volume between the bottom of the
layer at temperature T2 and the top at temperature T1 (with T1 < T2). Using the height d
between the two surfaces of the layer (see Þg 1), we get Fb = ρ0 γ (T2 − T1) g V dκ . The last
coefficient V dκ where V is the velocity of the ßuid and κ the thermal diffusivity takes into
account the effect of the thermal diffusion on the distortion of constant density planes. We
compute the power of this buoyancy force per unit volume Lp by multiplying it with the
velocity and we obtain

Lp = c1 ρ0 γ (T2 − T1) g d V
2

κ
, (3)

where c1 is a numerical coefficient.
The power of the viscous force per unit volume is the product of the force per unit

volume ρ0 ν∇2 V # ρ0 ν
V
d2
with the velocity

Ld = c2 ρ0 ν
V

d2
V , (4)
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Figure 1: Sketch of layer heated from below at temperature T2 greater than the top surface
temperature T1.

c2 is also a numerical coefficient. When the ratio between these two powers exceeds a critical
value convection occurs. We deÞne the Rayleigh number by

R =
Lp c2
Ld c1

=
γ (T2 − T1) g d3

ν κ
, (5)

and its value at onset is the critical Rayleigh number Rc =
c2
c1
.

1.2 Interesting aspects

The study of convection phenomena concerns a very wide range of systems. Varying the
Prandtl number (ratio between the kinetic viscosity and the thermal diffusivity) and other
parameters (related to other effects such as magnetic Þeld or rotation...) lots of situations
can arise. Some of them are presented in Þgure 2.

A particularity of the usual convective instability is that the unstable mode is degenerate
at onset. We will show in the following paragraph that the horizontal isotropy of the forcing
exists and that the manifold of the unstable modes is characterized by wave vectors of Þxed
norm but free direction in the xy plane. As we can see in Þgure 3, this is really different
from an instability generating a unique unstable mode and leads to some new behaviour on
which we will now focus on.

1.3 Onset of Instability

The full set of equations describing the motion of a ßuid is as follows:
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Convection in the presence of (nearly) two−dimensional isotropy
                   under steady external condition

Sequences of         bifurcations

low P                   high P

   Convection
Rayleigh Benard

rectangular

Vertical magnetic field
oscillatory onset

Kupper Lortz chaos

Centrifugally driven convection
for P>>1

spherical convection 

Vertical asymmetry

Benard Marangoni Convection

oscillatory onset, localized convection

EHC in homeotropic nematics

phase change interface

Binary fluid convection

Double layer convection

Side walls, cylindrical

Vertical axis of rotation

Temperature dependent

R

                Turbulent          convection

hexagons, asymmetric squares

(stars, planets)

dielectric susceptibility

Figure 2: Some effects that occur in Rayleigh-Bénard convection.

11



Figure 3: Critical Rayleigh number R at onset of instability for a horizontal wave vector
(kx, ky) in a non-isotropic case and in an isotropic one.

∂

∂t
ρ+ ∂jρuj = 0 (6a)

ρ
d

dt
ui = ρ

∂

∂t
ui + ρuj∂jui = −∂ip− ρgki + ∂j[νρ(∂iuj + ∂jui − 2

3
δij∂kuk)] (6b)

ρT
ds

dt
= ρcp

dT

dt
+
T

ρ

!
∂ρ

∂T

"
p

dp

dt
= ∂j(λ∂jT ) + Φ (6c)

where Φ is mechanical dissipation and the density ρ has a temperature dependence given
by

ρ = ρ0(1− γ(T − T0)), T0 =
T1 + T2
2

.

A static solution exists for equation (6):

u = 0

Ts = T0 − T2 − T1
d

z

pS = p0 − ρ0
!
z + γ

T2 − T1
d

z2

2

"
g

Using d as the length scale, κ
d2
as time scale and T2 − T1 temperature scale, we introduce

dimensionless variables

(x!, y!, z!) =
1

d
(x, y, z), u!i =

d

κ
ui,

t! =
κ

d2
t, T ! =

T

T2 − T1 .
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Assuming the mechanical dissipation Φ ≈ 0, and taking into account the temperature
dependence of density only in the gravity term (Boussinesq approximation), we obtain from
equations (6)

∇ · u = 0 , (7a)

P−1
!
∂

∂t
+ u ·∇

"
= −∇π +RΘ�k+∇2u , (7b)

(∂t+ u ·∇)Θ = �k · u+∇2Θ , (7c)

where primes have been dropped from the dimensionless variables and Θ = T ! − T !S , π =
p! − p!S . Although there are seven dimensional parameters (ρ0, g, γ, ∆T, ν, κ) that can be
measured with four dimensions (namely m, s, kg, K), the mean density ρ0 does not appear
in the equations in the Boussinesq approximation so that only two dimensionless parameters

are relevant for this problem. A Þrst one is the Rayleigh number R = γg(T2−T1)d3
νκ . A second

dimensionless number P = ν
κ is the Prandtl number. For small amplitude steady convection,

we have

∇ · u = 0 , (8a)

∇2u+Rθ�k−∇π = 0 , (8b)

∇2Θ+ u · �k = 0 . (8c)

Operation with −�k ·∇×∇× on (8b) yields

∇4uz +R∆2Θ = 0 , (9)

where

∆2 f =

!
∂2

∂x2
+
∂2

∂y2

"
f . (10)

Take ∆2 on equation 8c, and eliminate Θ from equation 9, we get a single equation of uz:#∇6 −R∆2$uz = 0 . (11)

With the separation ansatz

∆2uz =

!
∂2

∂x2
+
∂2

∂y2

"
uz = −a2uz , (12)

equation (11) becomes #∇6 +Ra2$uz = 0 . (13)

For stress-free boundaries, we have

uz|z=±1
2
= 0,

∂zux|z=± 1
2
= ∂zuy|z=±1

2
= 0,

Θ|z=± 1
2
= 0
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Use the continuity equation ∂xux + ∂yuy + ∂zuz = 0, we have

∂x∂zux + ∂y∂zuy + ∂
2
zzuz = ∂

2
zzuz = 0

at two boundaries. Also, from equation (9)#∇4uz +R∆2Θ$ |z=± 1
2
= ∂4zzzzuz = 0

In summary, the stress-free boundary conditions are:

uz = 0 , (14)

∂2zzuz = 0 , (15)

∂4zzzzuz = 0 , (16)

at z = ±1
2 . With these boundary conditions, equation (11) has solutions:

uz = cos ax sinnπ(z +
1

2
) , n = 1, 2, 3, . . . , (17)

and

R =
(n2π2 + a2)3

a2
, n = 1, 2, 3, . . . . (18)

a is the wavenumber of the unstable mode. The critical Rayleigh number Rc is the minimum
of R, and is given when n = 1 and a = π√

2
. Hence Rc =

27
4 π

4. Note that Rc is independent

of the Prandtl number.
A single mode describes a roll of convection as sketched in Þgure 4. Because of the

degeneracy of the unstable modes, complex behaviour can occur even close to the onset of
instability and we will study it through a weakly non-linear analysis.

2 Weakly Non-linear Analysis

2.1 Perturbative Expansion

To illustrate the ideas of weakly nonlinear analysis, consider the following one dimensional
example:

u!!(z) +Ru(z) + u!(z)u(z) = 0 with u = 0 at z = ±1
2
. (19)

We make the ansatz

u = *u1 + *
2u2 + *

3u3 +ú ,

R = R0 + *R1 + *
2R2 + . . . ,

and the normalization condition

* ≡< u1, u >= * < u1, u1 > +*2 < u1, u2 > + . . . ,
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which is equivalent to

< u1, un >= δ1n n = 1, 2, 3, . . . .

Insert these ansatz into the original equations and collect terms according to the powers of
*. To the lowest order O(*) we have

u!!1 +R0u1 = 0 ,
u1|z=± 1

2
= 0 .

The solutions are

u1 =
√
2 sinnπ

!
z +

1

2

"
, with R0 = n

2π2, n = 1, 2, 3, . . .

To continue the process, and for simplicity, we choose n = 1 here. Thus

u1 =
√
2 sinπ

!
z +

1

2

"
.

To the order O(*2),

u!!2 +R0u2 = −u!1u1 −R1u1
Multiply both sides with u1 , integrate over the interval −1

2 ≤ z ≤ 1
2 , we have on the left

hand side:

< u1(u
!!
2 +R0u2) >=< u2(u

!!
1 +R0u1) >= 0

where integration by parts has been utilized. This condition yields

< −u1(u!1u1 +R1u1) >= 0⇒ R1 = −< (u
3
1)
! >

3
= 0

which is the solvability condition. Now the equation of u2 becomes

u!!2 +R0u2 = −2π sinπ(z +
1

2
) cosπ(z +

1

2
) with u2|z=± 1

2
= 0

The solution is

u2 =
π sin 2π(z + 1

2)

4π2 −R0 =
sin 2π(z + 1

2)

3π

To the third order of *,

u!!3 +R0u3 = −u!1u2 − u!2u1 −R2u1 with u3|z=±1
2
= 0

15



Apply the solvability condition, we have

R2 = − < u1(u!1u2 + u!2u1) >
= − < 1

2
u2(u

2
1)
! + u!2(u

2
1) >

=<
1

2
u2(u

2
1)
! >

=
1

4

%
π2 sin 2π(z + 1

2) sin 2π(z +
1
2)

3π2

&
=
1

24

In this simple example we are able to calculate the amplitude of the mode at saturation as
a function of the departure from onset. At order *2 we get *2R2 = R−Rc, so that

u ≈ *u1 = 4
√
3
'
R−Rc sinπ

!
z +

1

2

"
(20)

In the case of convection close to onset of instability, the degeneracy of the unstable mode
may lead to non trivial behaviour because many modes can interact. We will use a general
formalism based on a weakly non-linear analysis similar to the simple one before. We write
the Navier-Stokes equations and the temperature equations in the form

(W + RU) �X =
∂

∂ t
V �X+Q( �X, �X) , (21)

where �X =

!
uz
θ

"
is a vector,W, U and V are linear operators, R is the control parameter

and Q the non linear term.
We expand �X and R in the form

�X = * �X1 + *
2 �X2 + ... ,

R = R0 + *R1 + *
2R2 + ... , (22)

where * is a small parameter and the other terms are of order one. We will now describe
two aspects of the instability slightly above onset. We Þrst focus on the steady pattern and
then we study the dynamic interaction between the different modes that can lead to a kind
of turbulence named phase turbulence.

2.2 Pattern selection

We write equation (21) at order * and we recover the linear problem of steady convection.
The solution is a linear combination of modes described by equation (17) with wave vectors
of norm α. Thus, we write

�X1 = �f(z)

n=N(
n=−N

cn e
i%kn.%r (23)
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where ,kn lies in the xy plane and is of modulus α. In order to have real solutions, we impose
the two other relations ,k−n = −,kn and c−n = c∗n.

At order *2 we get

(W + R0U) �X2 = Q( �X1, �X1)−R0U �X1 . (24)

Then we apply the solvability condition ) �X∗i |right hand side* = 0 where �X∗i is part of
the kernel of the adjoint homogeneous linear operator. If the properties of the layer are
symmetric with respect to the z = 0 plane, we obtain R1 = 0 because Q is antisymmetric
in z while �f(z) and �f∗(z) are symmetric. The solution of equation 24 can be written in the
form

�X2 =
(
i,k

�F(,ki + ,kk, z) ci ck e
i (%ki+%kk).%r . (25)

We write the equation (21) at order *3 and use the solvability condition. In the most
general case, we get an expression of the form#
*R1 + *2R2 + ...

$
U c∗i =− β*

(
n,m

cn cm δ(,ki + ,kn + ,km)

+ *2(

N(
n=1

cn c
∗
nA(

,ki.,kn) +A0 |ci|2) c∗i + ... for i=1, 2, 3... . (26)

Here β is an asymmetry coefficient which appears for instance if we consider non Boussinesq
effects and write the temperature dependence of the density as
ρ = ρ0 (1− α (T − T0) + β (T − T0)2).
If β = 0, we get R1 = 0 and we recover the symmetric case result.

Looking for regular solutions for which the angle between the N neighbouring q vectors
is given by π/N and |ci|2 = 1, we obtain rolls solutions if N = 1, squares if N = 2. If N = 3
many solutions exists depending of the relative phases of the three coefficients ci. In Þgure
4, these patterns of convection are sketched.

If N ≥ 4 there are no regular periodic patterns but quasi patterns of higher order can
be observed. Depending on the value of β and R, rolls or hexagons are stable. Without
asymmetry or at high Rayleigh number, the rolls are stable whereas hexagons are stable if
the asymmetry parameter β is high. Note that in some domain of the space parameters,
both solution are stable, as can be seen in Þgure 5 [?, ?, ?].

2.3 Phase turbulence

We will now focus on the case where dynamic effects are present and try to describe how
the different modes can interact. Using Ci(t) = *ci, we write

�X(x, y, z, t) = �f(z)
N(

n=−N
Cn(t) e

i%kn.%r (27)
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Figure 4: Sketch of patterns of convections: rolls, squares, l and g-hexagons.

β

Ro lls

g−hexagonsl−hexagons

Figure 5: Stability diagram of rolls and hexagons patterns in the (β, R) plane.
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Close to onset, one expects that the time dependence of the modes will be slow and of order
*2. As before, we write the solvability condition at order three and this yields to dynamical
equations for the coefficients

V
d

dt
C∗i =(R−R0)U C∗i + β

(
n,m

CnCm δ(,ki + ,kn + ,km) (28)

+ (

N(
n=1

CnC
∗
nA(

,ki.,kn) + E(,ki.,kn, ,λ.,ki × ,kn) +A0 |Ci|2)C∗i + ...with i=1, 2, 3... .

(29)

If there is no rotation (E = 0), and if there is no mean ßow, we can write the evolution
equations at this order as

V
d

dt
C∗i = −

∂

∂ Ci
F (C1, ..., Cn) (30)

where

F (C1, ..., Cn) =− 1
2
(R−R0)U

N(
i=1

|Ci|2 − 1
3
β
(
i,n,m

CiCnCm δ(,ki + ,kn + ,km) (31)

+
1

4

)
N(
n=1

|Cn|2A(,ki.,kn) + A0 |Ci|2
*
|Ci|2 (32)

Thus these are evolution equations of Lyapunov type and the steady stable solutions
will correspond to the local minima of F . The asymptotic approach is guaranteed and there
can not be chaotic behaviour. This is not the case if either E is not equal to zero, or if we
consider solutions with non-zero mean ßow (stress free boundary) or if we consider terms
of higher order. Then, chaotic behaviour can occur.

Indeed, when we consider a horizontal layer heated from below that is rotating about a
vertical axis, E is not zero and the evolution equations are not of Lyapunov type. Above
a critical value of the rotating parameter, all steady solutions become unstable. The local
orientation of the convection rolls changes in time and this phenomenon is called phase
turbulence. Experimental evidence have been seen in a rotating convection layer. A typical
time evolution of the pattern of convection is shown in Þgure (6)[?, ?].

Another case in which phase turbulence is present is the convection in the presence
of stress-free boundaries. Because no stress is exerted by the boundaries on horizontal
motion of the ßuid, large scale ßow can be generated by a small Reynolds stress. The
advection of the pattern by the large scale mean ßow must be taken into account in the
evolution equations which are no longer of Lyapunov type. Phase turbulence can also occur
as presented in Þgure 7 where the time evolution of the heat ßux in convection is calculated
numerically for different values of the Rayleigh number [?, ?].

Phase turbulence shares some properties with the asymptotic turbulence of Navier-
Stokes equations in the limit of inÞnite Reynolds number. A brief characterization of
different types of turbulence is given in Þgure 8.

19



Figure 6: Time evolution of patterns of convection with phase turbulence [?, ?].
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Figure 7: Time evolution of the heat ßux for different values of the Rayleigh number and
stress-free boundaries. Pm = 0.15. At high Rayleigh numbers the evolution is chaotic.

21



(few degrees of freedom,

4

Dynamical systems

Phase  Turbulence 

(many degrees of freedom, isotropy degeneracy; R close to Rc

rotating or non−rotating)

Classical turbulence

aspect ration layers)

Asymptotic Turbulence

(Turbulence in the limit of asymptotically high Reynolds numbers)

Properties of Turbulence

Chaotic time dependence 
dependence
Chaotic spatial Broad wavenumber

spectrum Fractal structure
Inertial range

examples: convection  in a large aspect ratio layers, 

(shear−flow turbulence in channels, pipes and boundary layers; high Rayleigh number convection in large 

eg convection in a box, R>R  ) 

Figure 8: Characteristic properties of different kinds of turbulence.
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