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1 Introduction

In many cases in nature, like in the Earth�s atmosphere, in the interior of stars and planets,
one sees the appearance of patterns that seem to be stable and persistent. Those patterns
usually correspond to broken symmetries. The purpose of the following lectures is to ex-
plain the formation of these patterns and their persistence even under �strong� turbulent
conditions. This Þrst lecture is dealing with onset of turbulence by determining the critical
value of the control parameters that the laminar solution becomes unstable.

2 Linear theory

2.1 States of Minimum Energy

Continuous material systems are subject to conservation laws like mass, energy, momentum
and angular momentum. The laws of thermodynamics also tell us that the mechanical
energy has a tendency to be converted to thermal energy leading a system to a state of
minimum mechanical energy, subject to other conservation laws. Systems that have reached
this state are called equilibrium systems. As an example consider a rotational ßow in a
cylinder. To simplify the problem we consider that the ßow has only a radial dependence
e.g. ω = ω(r). We can then ask the following question: Given an initial condition with
angular momentum A, what is the state of minimum mechanical energy our system can have
keeping the angular momentum Þxed? The kinetic energy K and the angular momentum
can be expressed as functionals of the angular frequency as:

K[ω] = π
! r0

0
(ω(r)r)2rdr, A[ω] = 2π

! r0

0
ω(r)r2rdr = A0 (Þxed) (1)

To minimize the energy keeping the angular momentum Þxed we have to minimize the
functional:

F [ω,λ] = K[ω] + λ (A[ω]−A0) (2)

Where λ is a Lagrange multiplier and A0 the angular momentum of the ßow. Evaluating
the variation of F with respect to ω and λ we obtain

δF = δK + δ(λA) = δ
"
2π

! r0

0

1

2
ω2(r)r3dr + λ

#
2π

! r0

0
ω(r)r3dr −A0

$%
= 0 (3)
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δF = 2π
"! r0

0

&
ω(r)r3dr + λr3

'
δωdr + δλ

#
2π

! r0

0
ω(r)r3dr −A0

$%
= 0. (4)

In order for the variation to be equal to zero for every δω and every δλ we must have

ω(r)r3 + λr3 = 0 and

! r0

0
ω(r)r3dr = A0. (5)

which leads to

ω(r) = −λ = constant = ω0 with ω0 =
2A0
πr40

(6)

which is a rigid body rotation.
A similar example is if we consider a ßow in a cylinder with the velocity being given by

u = v(r)k where k is the unit vector parallel to the axis of symmetry. The kinetic energy
and the momentum are given by

K[v] = π
! r0

0
v2(r)rdr, M[v] = 2π

! r0

0
v(r)rdr =M0 (Þxed) (7)

To minimize the energy, keeping the momentum Þxed, we deÞne the functional

F [ω] = K[v] + λ(M[v]−M0). (8)

Varying it we get

δF = δK + δ(λM) = δ

"
π

! r0

0
v2(r)rdr + λ

#
2π

! r0

0
v(r)rdr −M0

$%
= 0 (9)

which leads to

v(r) + λ = 0 and 2π

! r0

0
v(r)rdr =M0 (10)

Which again leads to the motion of a rigid body with velocity given by u =M0/πr
2
0k.

The fact that the above states are of minimum energy indicates that they are stable.
Any other state with more energy will not be stationery or stable and will decay to the
solutions of minimum energy.

As a further example we will examine the ßow of a ßuid between two inÞnite parallel
plates separated by a distance d. A uniform pressure gradient along one of the parallel
directions is assumed to keep the ßow from being non-zero. The only control parameter
of the problem is given by the Reynolds number Re = Ud/ν where ν is the kinematic
viscosity and U is the averaged velocity. The above system has a steady solution given by
u =

&
Re(1/4 − z2), 0, 0' (Poiseuille ßow.). We want to examine for which values of the

control parameter Re the Poiseuille ßow is stable. It is typical that in stability problems
like the one described above four regimes of the ßow parameter Re can be distinguished,
see Fig. 1.
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Figure 1: The behavior of perturbations on the laminar solution for different Reynolds
numbers.

A) From 0 to ReE all disturbances decay exponentially.

B) From ReE to ReG some inÞnitesimal or Þnite disturbances might grow for Þnite time
but all disturbances decay exponentially for t→∞

C) From ReG to Rec inÞnitesimal disturbances decay exponentially but Þnite distur-
bances converge to a new solution.

D) From Rec to ∞ inÞnitesimal disturbances grow exponentially.
The following paper is dedicated to estimating the values of ReE, Rec.

2.2 The Energy Method

We restrict ourselves to an incompressible ßuid on a domain D. The equations of motion
are given by

∂tv + v ·∇v = −∇p+ f + ν∇2v (11)

∇ · v = 0 (12)

with boundary conditions on ∂D
v = 0 (13)

or

v · n = 0 and n× (∇× (n× v)) = 0 (14)

where n is the normal unit vector to ∂D.
Denoting the stationary solution of maximum symmetry by vs and writing the general

solution as the stationary solution plus a perturbation u

v = vs + u, (15)

The Navier Stokes equation for the velocity u becomes

∂tu+ vs ·∇u+ u ·∇vs = −∇π + ν∇2u (16)

∇ · u = 0 (17)
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with the same boundary conditions as (13) or (14). Multiplying the above equation by u
and taking the volume average we obtain

1

2

d

dt
%u · u& = −%|∇u|2& −Re%u · (u ·∇)vs& (18)

where we have used the boundary conditions to eliminate the surface terms. From the
above equation it is obvious that if Re%u(u ·∇)vs& ≥ 0 then 1

2
d
dt%u · u& ≤ 0 and therefor all

perturbations decrease in amplitude with time. On the other hand, if Re%u · (u ·∇)vs& < 0
we can deÞne the functional

RE ≡ %|∇�u|2& − 2%π∇ · �u&
−%�u · (�u ·∇)vs& (19)

and look for its minimum.
Let

I1 = %|∇�u|2&, I2 = −%�u · (�u ·∇)vs& and I3 = −2%π∇�u&. (20)

Then

δRE = δI1 + δI3
I2

− (I1 + I3)δI2
I22

=
δI1 + δI3

I2
−M δI2

I2
= 0, (21)

where M = min{RE(u)}. Expressing the variations δI1, δI2, δI3 as we did in the previous
paragraph, we obtain

1

2
M [�uj∂jvs i + �uj∂ivs j] = −∂iπ + ∂j∂j�u (22)

and

∂i�ui = 0. (23)

Now, since M is the minimum of the functional RE we have that for an arbitrary solution
of (17) that

M ≤ %|∇u|2& − 2%π∇u&
−%u · (u ·∇)vs& (24)

using the energy equation (18) we have that

1

2

d

dt
%u · u& ≤ −(M −Re)%u · (u ·∇)vs& (25)

and since %u · (u ·∇)vs& ≤ 0 we have that the perturbation can grow only if Re ≥M .
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2.3 Linear Stability of Plane Couette Flow

As a special case illustrating the above general theory we take a ßow between two parallel
plates moving in opposite directions with relative velocity UD. The distance d between
the plates can be used to deÞne Reynolds number Re = |UD|d/ν and the solution can be
written in dimensionless form

vs = −Re zi, (26)

where we have introduced Cartesian coordinates and the unit vectors in the directions of
(x, y, z) are (i, j,k), respectively. The velocity UD is in the direction of i. For the solution
of Eqs. (22), (23) we introduce the general representation

�u = ∇× (∇ϕ× k) +∇ψ × k (27)

for a solenoidal vector Þeld �u, where ϕ and ψ are some scalar functions. The z-components
of curl and (curl)2 of Eq. (22) give

∇4∆2ϕ = 1

2
M(2∂x∂z∆2ϕ+ ∂y∆2ψ). (28)

∇2∆2ψ = 1

2
M∂y∆2ϕ, (29)

where ∆2 = ∂
2
xx + ∂

2
yy. The boundary conditions for this problem are

ϕ = ∂zϕ = ψ = 0. (30)

If we only consider solutions independent of x, the function ψ can be eliminated from
Eqs. (28), (29) to give

(∇6 − 1
4
M2
y∂

2
yy)∆2ϕ = 0 with ϕ = ∂zϕ = ∇4ϕ = 0 at z = ±1

2
. (31)

Since this eigenvalue problem is similar to the problem of determining the critical
Reynolds number in a ßuid layer heated from below with rigid boundaries, we can use
the latter fact to write

1

4
M4
y = 1708 corresponding to ϕ = cos(αy) f(z) with αc = 3.116, (32)

where αc is the lowest eigenvalue. It can be prooven that more general solutions ϕ and ψ
that depend on x and y do not yield values of M lower than My [1]. Therefore Þnally we
have ReE = 2

√
1708 ≈ 82.6 for the plane Couette ßow. The values for various non-rotating

systems have been determined experimentally and theoretically, and comparison with the
linear theory is given 1 in Table 1.

1The maximum velocity and the channel width d (radius d in the case of pipe ßow) have been used in
the deÞnition of Re.
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ReE ReG (from exp.) Rec
Plane Couette Flow 82.6 ≈ 1300 ∞
Poiseuille Flow (Channel Flow) 99.2 ≈ 2000 5772
Hagen�Poiseuille Flow (Pipe Flow) 81.5 ≈ 2100 ∞

Table 1: Reynolds Numbers for Shear Flows in Non�Rotating Systems.

2.4 Linear Stability of Circular Couette Flow

Consider the ßow between coaxial cylinders with radii r1 and r2 (> r1) that rotate with
angular velocity Ω1 and Ω2, respectively. The basic solution of Eq. (12) for the azimuthal
velocity vϕ is

vϕ =
r22Ω2 − r21Ω1
r22 − r21

r − r
2
1r
2
2(Ω2 − Ω1)
(r22 − r21)r

(33)

and is called the circular Couette ßow. For simplicity we restrict our analysis to the case
r1−r2 , r1 and 0 < Ω1−Ω2 , Ω1. In this limiting case the solution (33) assumes the form
of a plane Couette ßow studied in the previous section, with angular velocity ΩD =

1
2(Ω1+

Ω2). The corresponding coordinate system is oriented so that the x-coordinate points in
the azimuthal direction, the y-coordinate points in the axial direction, and the z-coordinate
is pointed radially outward. The Reynolds number is deÞned by Re = (Ω1r1 − Ω2r2)d/ν.

Next we study inÞnitesimal disturbances therefore neglecting the nonlinear term �u ·∇�u
that enters Eq. (17), and add a Coriolis term

∂

∂t
�u+ vs ·∇�u+ �u ·∇vs + 2Ω× �u = −∇π +∇2�u, (34)

∇ · �u = 0, (35)

where Ω = ΩDd
2/ν. Assuming time dependence of the form exp(σt), boundary conditions

�u = 0 at z = ±1
2 and a representation for �u in the form

�u = ∇× (∇× k �ϕ) +∇× k �ψ, (36)

we obtain the following eigenvalue problem

∇4∆2 �ϕ− 2Ω ·∇∆2 �ψ = vs ·∇∇2∆2 �ϕ+ σ∇2∆2 �ϕ− v!!s ·∇∆2 �ϕ (37)

∇2∆2 �ψ + 2Ω ·∇∆2 �ϕ = vs ·∇∇2∆2 �ψ + σ∆2 �ψ + k · (∇∆2 �ϕ× v!s). (38)
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Again, we are going to focus on disturbances which are x-independent and for which the
imaginary part of σ vanishes. In this case the critical disturbances correspond to σ = 0 and
Eqs. (37), (38) reduce to

∇4∂2yy �ϕ− 2Ω∂y∂2yy �ψ = 0, (39)

∇2∂2yy �ψ − (Re− 2Ω)∂y∂2yy �ϕ = 0. (40)

In the last formula we have used the expression (26) for vs. Then we observe that the
above equations are identical with the ones without x-dependence, up to a numerical factor
in the second term in Eq. (40). So, we can use the solution (32) to write

Rey = 2Ω+
1708

2Ω
. (41)

A calculation of the minimum of the above expression gives

Rec = 2
√
1708 corresponding to 2Ω =

√
1708. (42)

It can be shown that the energy stability limit coincides with the result just obtained.
Therefore, at this point the stability problem is solved completely because of the relation
ReE ≤ ReG ≤ Rec which in this problem attains strict equalities. We see that for large
values of Ω Eq. (41) that yields

Re < 2Ω (43)

as a condition for stability.

This also can be shown to follow from the Rayleigh stability criterion, d(ω(r)r2)2

dr ≥
0, which describes the condition for stability of rotating inviscid ßuid to axisymmetric
disturbances. In our case assumes the form

|Ω1r21| ≤ |Ω2r22|. (44)

Using the notation in Fig. 2 we can write (44) as

#
ΩD +

Ω1 − Ω2
2

$#
r0 − d

2

$2
≤
#
ΩD − Ω1 − Ω2

2

$#
r0 +

d

2

$2
. (45)

After expanding and regrouping we obtain

Ω1 − Ω2
2

(#
r0 − d

2

$2
+

#
r0 +

d

2

$2)
≤ 2ΩD r0 d. (46)
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Figure 2: The asymptotic limit for large values of Ω leads to the inequality Re < 2Ω as a
condition for stability.

Remembering the relation between ΩD and Ω we Þnally obtain

Re
νr0
d
< 2Ω

νr0
d

(47)

from which our assertion follows.
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