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Abstract

We consider non-linear amplitude equations for double and triple diffusive convection
close to marginal stability. We study the effect of non-normality on double and triple
diffusive convection. We also consider the effect of small amplitude noise on the system.
We observe that non-normality is not sufficient to take system away from basin of
attraction of stable fixed points. Small amplitude noise along with non-normality can
cause the system to go away from basin of attraction of stable fixed point. We also
discuss the different regimes of behavior observed as the frequency of noise is changed.

1 Introduction

The importance of non-normality in transition to turbulence in shear flows has been inves-
tigated by many researchers. Non-normality was proposed as a possible explanation (c.f.
Trefethen et al. (1993), Grossmann (2000)) for turbulence observed at Re numbers lower
than those predicted by linear stability theory for shear flows. Non-normality is not im-
portant for Rayleigh convection as the linear operator is normal. We study the effect of
non-normality in case of double diffusive and triple diffusive convection. Small noise can
be amplified due to non-normality as observed by Gebhardt & Grossmann (1994). We also
study the effect of small amplitude noise in case of double diffusive convection. In all cases
we will study the amplitude equations for the system close to marginal stability.

Double diffusive convection, first suggested by Stommel et al. (1956) is a important
geophysical phenomenon. Double diffusive convection is an important process in formation
of stars. Double diffusive convection is also important in order to understand the ocean
convection. It has been observed that close to marginal stability double diffusive convection
can start even with small noise as shown in fig 1 from Shirtcliffe (1967).

Non-normality as a possible cause of instability was first considered by Trefethen et al.

(1993) and Gebhardt & Grossmann (1994). Trefethen et al. (1993) suggested a nonlinear
bootstrapping mechanism consisting of amplification of disturbances due to non-normality,
resulting in nonlinear mixing such that output of nonlinear mixing is again amplified by non-
normality. This mechanism is shown in fig 2. A more detailed description of works to study
non-normality as possible pathway to turbulence is given in review paper by Grossmann
(2000).

Most of the literature concerning study of non-normality is confined to their study for
shear flows such as Baggett et al. (1993). The linear operator for shear flows are highly
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Figure 1: A section of temperature record near marginal stability. Differential output of two
thermocouples is plotted against time. This transition is possible below marginal stability
with small noise due to non-normality. Plot from Shirtcliffe (1967)

non-normal. The linear operator for the nonlinear amplitude equation obtained for dou-
ble and triple diffusive convection obtained by Arneodo et al. (1985) and also Coullet &
Spiegel (1983) is non-normal too. This suggests the possibility that non-normality can play
important role even for convection flows.

Role of noise in non-linear dynamical systems has been studied for long time, Locher
et al. (1998) is a review article listing important works done in the field. Even though
we confine our study to single frequency small amplitude noise, our observations are in
close correlation to observation for stochastic noise in dynamical systems. We find our
results support the works done by Ganopolski & Rahmstorf (2002), where they suggest the
possibility of climate change due to stochastic resonance.

In §2 we describe the system of equation considered. Linear analysis is described in §3.
We obtain linear amplitude equations for our system in §4.We obtain nonlinear terms for
the amplitude equations in §5. Finally the results are described in §6.

2 Equations

We consider two dimensional motion in a box of depth d (in z), width πd/a (in x) and
infinite length (in y), c.f. fig (3). We choose ∆Θ and ∆Σ, the magnitudes of the vertically
impressed differences of temperature and salinity, as the units of temperature and salinity.
The length and time units are d and d2/κT , where κT is the thermal diffusivity. The
equations are, c.f. Arneodo et al. (1985) & Chandrasekhar (1961),

∂t∆Ψ = σ∆2Ψ − σR∂xΘ + στS∂xΣ + σ2T∂zΥ + J(Ψ,∆Ψ), (1)

∂tΘ = ∆Θ − ∂xΨ + J(Ψ,Θ), (2)

∂tΣ = τ∆Σ + ∂xΨ + J(Ψ,Σ), (3)

∂tΥ = σ∆Υ − ∂zΨ + J(Ψ,Υ). (4)

139



Figure 2: The suggested bootstrapping mechanism by Trefethen et al. (1993) leads to growth
and instability.

where,
J(f, g) = ∂xf∂zg − ∂zf∂xg, ∆ = ∂2

x + ∂2
z .

The parameters are defined as,

R =
gd3

κT ν

(

∆ρ

ρ

)

T

, (5)
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gd3

κSν
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)

S
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T =

(

2Ωd2

ν

)2

,
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ν

κT
,

τ =
κS

κT
.

where, R is thermal Rayleigh number, S is salinity Rayleigh number, T is Taylor number,
σ is Prandtl number, τ is Lewis number, (∆ρ/ρ)T is the density difference solely due to
imposed temperature difference and (∆ρ/ρ)S is density difference solely due to imposed
salinity difference. Ω is the rotation rate about the z-axis.

The solution is independent of y. Ψ is the stream function for the x and z velocities, Θ
and Σ are the deviations of temperature and salinity from their static values, and Υ is the
y velocity divided by σT 1/2.

We can express above equations concisely as

∂tLU = MλU + N(U) (6)

where
U(x, z, t) =‖ Ψ, θ,Σ,Υ ‖T . (7)

The parameter vector λ is
λ = (R,S, T, σ, τ, a). (8)
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Figure 3: Two dimensional box of depth d and length πd/a.

The linear operators in eq. (6) are,
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The non-linear term is,

N(U) = (L∂zUE
′)∂xU − (L∂xUE

′)∂zU (11)

where
E′ =

∣

∣1 0 0 0
∣

∣

is the transpose of E.

3 Linear Theory

The linearized form of equation (6) admits solution of form,

U = Umn ∗ Ξmne
st (12)

where, Umn is a constant four component vector. Ξmn is defined as
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and the operator ∗ is defined such that
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s is a root of,
det ‖Mmn − Lmns ‖= 0 (13)

where Mmn and Lmn are the matrix representations of the restrictions of M and L on Ξmn.
They can be found by substitution of eq (12) into eq (6).
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and
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where
q2mn = m2a2 + n2π2 (16)

The fundamental in z is the most unstable of the vertical modes (as in Rayleigh- Bénard
convection, Chandrasekhar (1961)), so we assume instability is encountered only for n = 1.
When instability first occurs, it does so for a given value of a with m = 1 (Arneodo et al.

(1985)). For m = 1 and n = 1, eq (13) is a quartic,

s4 + P3s
3 + P2s

2 + P1s+ P0 = 0 (17)

where,

P0 = π2σ2τTq2 − a2σ2τSq2 − a2σ2τRq2 + σ2τq8, (18)

P1 = π2σ2(τ + 1)T − a2στ(σ + 1)S − a2σ(σ + τ)R+ σ(στ + σ + 2τ)q6,

P2 =
π2σ2T

q2
−
a2στS

q2
−
a2σR

q2
+ (σ2 + 2στ + 2σ + τ)q4,

P3 = (1 + 2σ + τ)q2.

where q = q11.
We are looking for triple polycritiality point. This is a point in phase space of R, S and

T such that R = R0, S = S0 and T = T0 given by eq (23) where we have three marginally
stable modes and all other modes are stable. Close to this point behavior of the system can
be obtained by studying the behavior of these three stable modes. The condition for this is
given by, c.f. Arneodo et al. (1985),

P0 = P1 = P2 = 0 (19)
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and eq (17) becomes
s3(s+ P3) = 0 (20)

Dividing eq (17) by (s+ P3) we get,

s3 + P2s+ (P1 − P2P3) +
P0 − P3(P1 − P2P3)

s+ P3

= 0 (21)

In the neighborhood of the polycriticality condition (eq (19)), we have roots |s| ¿ P3

and we develop the remainder. We obtain an cubic critical polynomial for the marginally
stable modes.

Pc(s) ≡ s3 + µ2s
2 + µ1s+ µ0 = 0 (22)

where,

µ0 =
P0

P3

, µ1 =
P1

P3

−
P0

P 2
3

,

µ2 =
P2

P3

−
P1

P 2
3

+
P0

P 3
3

The condition for polycriticality, eq (19), can be written as,

R0 =
q6(τ + 2σ)

a2σ(1 − σ)(1 − τ)
, (23)

S0 =
q6τ2(1 + 2σ)

a2σ(σ − τ)(1 − τ)
,

T0 =
q6σ(1 + σ + τ)

π2(σ − τ)(1 − σ)
.

Let λ0 be a point on the polycritical surface defined by eq(23) or equivalently (µ ≡
(µ0, µ1, µ2) = 0). Normal mode associated with s = 0 satisfies,

Mλ0
φ ∗ Ξ11 = 0 (24)

where φ is constant vector. Let M0 = M11(λ0) and L0 = L11(a). For s = 0 in eq(13) is det
M0 = 0, and we solve for eigenvectors and generalized eigenvectors,

M0φ = 0, M0ψ = L0φ, M0χ = L0ψ. (25)

Solving eq(25) we obtain,

φ = ‖ 1,
−a

q2
,
a

τq2
,
−π

σq2
‖T , (26)

ψ = ‖ 0,
a

q4
,
−a

τ2q4
,
π

σ2q4
‖T ,

χ = ‖ 0,
−a

q6
,
a

τ3q6
,
−π

σ3q6
‖T .
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4 Linear amplitude equation

The differential equations satisfied by coefficients (amplitudes) of the vectors are called
amplitude equations. Considering the linearized form of eq(6),

∂tU = L−1MλU (27)

Near polycriticality, only three characteristic solutions are nearly marginal, rest are damped
normal modes. At polycriticality we define U as,

U = [A(t)φ+B(t)ψ + C(t)χ] ∗ Ξ11(x, z) (28)

We want to derive an equation for amplitude vector A = (A,B,C). For λ = λ0 we have,

Ȧ = JA (29)

Extending it to parameter space where λ 6= λ0. Suppose we select three vectors φλ ∗ Ξ11,
ψλ ∗ Ξ11 and χλ ∗ Ξ11, that together form the stable modes. So, we have

U = [A(t)φλ +B(t)ψλ + C(t)χλ] ∗ Ξ11(x, z) (30)

Thus the eq (29) is deformed into linear amplitude equation for λ 6= λ0,

Ȧ = KλA (31)

where Kλ satisfies following conditions,

Kλ0
= J, (32)

det(Kλ − sI) = Pc(s).

Since there are only three free parameters in Pc(s), we want to express Kλ in only three
parameters. The Jordan-Arnold canonical form has this property and we use it, c.f. Arneodo
et al. (1985). This gives us a third order equation which can be written as,

...
A + µ2Ä+ µ1Ȧ+ µ0A = 0 (33)

or writing it as,

Ȧ = B, (34)

Ḃ = C,

Ċ = −µ2C − µ1B − µ0A.

which is equivalently to
Ȧ = JµA (35)

where,

Jµ =

∣

∣

∣
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∣

∣

0 1 0
0 0 1

−µ0 −µ1 −µ2

∣

∣

∣

∣

∣

∣

(36)

This is Jordan form of Kλ.
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5 Nonlinear terms

We seek nonlinear terms in amplitude equation eq(35) of form,

Ȧ = JA+ g(A) (37)

Employing the general method used in Coullet & Spiegel (1983), we express the time de-
pendence of U(x, z, t) in terms of A as,

U(x, z, t) = V [x, z,A(t)] (38)

Substituting eq(37) and eq(38) in eq(6) we obtain

LV = N(V) − (g · ∂A)LV (39)

where,

L = DL − M,

D = (JA) · ∂A , M = Mλ0
.

We expand V and g in Taylor series in A and denote partial sum of all terms of degree κ
as Vκ and gκ. Thus Vκ(x, z, cA) = cκVκ(x, z,A). We now need to solve,

LVκ = Iκ − (gκ · ∂A)LV∞ (40)

where,

Iκ =
κ−1
∑

α=1

N (Vκ−α,Vα) −
κ−1
∑

α=1

gκ−α+1 · ∂ALVα,

N (U, V ) =
(

L∂zV E
′
)

∂xU −
(

L∂xV E
′
)

∂zU.

By successively solving for different orders we can obtain higher order terms. We will not
do the entire solution here as it can be obtained from Arneodo et al. (1985). The final
amplitude equation with non-linear terms can be written as,

...
A + (µ2 − k3A

2 − k6AÄ)Ä+ (µ1 − k2A
2 − k4AȦ− k5Ȧ

2)Ȧ+ (µ0 − k1A
2)A = 0 (41)

where k1,k2,,k6 are constant coefficients. Their expression can be obtained from Arneodo
et al. (1985).
Since we want to consider the behavior of the system near the polycriticality point given
by eq (23), we can consider asymptotic expansions of form,

R = R0 + εR1 + ε2R2 + . . . ,

S = S0 + εS1 + ε2S2 + . . . ,

T = T0 + εT1 + ε2T2 + . . . .

and scaling given by,

τ = εt, A = ε3/2x.
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Expanding eq(41) using eq(42) and eq(42) to obtain amplitude equations of third order,
which are

...
x + µ̂2ẍ+ µ̂1ẋ+ µ̂0x = k1x

3 (42)

We have x5 term in the next order nonlinear terms. We include x5 in some cases where
we need additional fixed points for the system to prevent the solution from blowing up. So
the amplitude equation if we include the x5 term from the higher order nonlinear terms is
given as,

...
x + µ̂2ẍ+ µ̂1ẋ+ µ̂0x = k1x

3 − lx5 (43)

This amplitude equation can be rederived for double diffusive convection case where
T = 0. The equation we will obtain (Coullet & Spiegel (1983)) will be (x5 nonlinearity
included),

ẍ+ µ̂1ẋ+ µ̂0x = k1x
3 − lx5 (44)

We intend to study the effect of the non-normal operator on this system looking for
possibility of going out of basin of attraction of a stable fixed point of the system with small
initial perturbations. We will also study the effect of noise on this system and possibility
of chaos due to presence of small amplitude noise.

6 Results

The second order amplitude equation with A5 nonlinearity (eq (44)) has five fixed points,
given by

A = 0, A = ±

[

k1 +
√

k2
1
− 4lµ0

2l

]1/2

, A = ±

[

k1 −
√

k2
1
− 4lµ0

2l

]1/2

(45)

The bifurcation diagram for these set of equations is shown in fig 4 for µ1 = 0.71, k1 = 1
and l = 0.5. The solid lines indication the stable solution while the dashed lines indicate
the unstable solution.

We have used 4th order Runge-Kutta Scheme to integrate the ODE’s. We have used
constant time step. The time step was chosen to be ∆t = 0.001 for all simulations discussed
here. This time step is small and integration converges for all cases discussed.

6.1 Basin of attraction of origin

Basin of attraction is defined as the region of states, in a dynamical system, around a
particular stable steady state, that lead to trajectories going to the stable steady state. We
are studying the basin of attraction of the origin.

Fig 5 shows the basin of attraction for eq (44) for the stable fixed point at origin. The
basin of attraction is shaped like a slit. It does not close as shown in the figure but extends
till infinity. As the figure was calculated numerically it gets truncated.

We have observed that due to non-normal nature of eq (44) even if we give a small
initial perturbation inside the basin of attraction the amplitude grows and goes close to
the boundary of basin of attraction before decaying back to origin. This suggested that in
presence of small noise the system could go away from origin even with very small initial
disturbances.
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Figure 4: Bifurcation diagram for the amplitude equation. Solid line represents stable
solution and dashed line is unstable solution.
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Figure 5: The basin of convergence of Origin for second order amplitude equation with
µ1 = 0.5, µ0 = 0.006, k1 = 1 and l = 0. Two trajectories are shown. One starts just
inside the basin and ends up at the origin, while the second trajectory starts at a point just
outside the basin and goes to infinity.
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Figure 6: Even small amplitude noise can make big difference. We show the system with
µ1 = 0.7, µ0 = 0.1, k1 = 1, l = 0 and ε = 10−3. Three different trajectories are shown for
ω = 2.4 (dashed), 2.55 (solid) and 2.7 (dashed again). All have same initial perturbation.
This illustrates the importance for small amplitude disturbances in the system.

6.2 Small amplitude noise system

In any physical system background noise of small amplitude is always present. In present
case we have only considered marginally stable modes but the stable modes are still in the
background and can be considered as background noise. Thus it is important to understand
how system behaves in presence of small amplitude noise.

It would be very difficult to analyze the system with random noise. So we considered
putting noise of particular frequency. This physically can be explained as the most dominant
frequency in the noise. Ultimately we would like to consider the effect of random noise as
well.

The modified equations with the noise for triple diffusive system can be written as,

...
A + µ̂2Ä+ µ̂1Ȧ+ µ̂0A = k1A

3 − lA5 + εA sin(ωt) (46)

and for double diffusive system is,

Ä+ µ̂1Ȧ+ µ̂0A = k1A
3 − lA5 + εA sin(ωt) (47)

where, ε is atleast an order of magnitude smaller than anything else.
Figure 6 shows three different trajectories for ω = 2.4, 2.55 and 2.7. A frequency of 2.4

makes the system unstable even though we started well within the basin of attraction of the
unperturbed equations. For ω = 2.55, we see the system go into an almost periodic orbit
for a very long time before decaying back to origin. Figure 7 shows the behavior of A with
time for this case. It is clear from this figure that we go into a orbit very close to periodic
orbit for ω = 2.55. The system decays down to origin for ω = 2.7. It is clear the we can
go to other states even after starting in the basin of attraction of origin with small noise in
the system.
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Figure 7: Nearly periodic orbit for ω = 2.55 till t ≈ 80 We can make system stay on this
orbit longer by choosing a more suitable frequency.

It is also possible to go to infinity even if we start infinitesimally close to origin as
shown in figure 8. There is range of ω values that can take the system out of the basin
of attraction even with very small initial disturbances. This physically seems to suggest
that background disturbances even of very small magnitude can make system unstable in
linearly stable region.

We get a range of interesting behavior if we take l 6= 0 in eq 47. We started increasing
ω from 0. For very small values, ω ≤ 1.1, almost no effect of the noise is seen on the system
and for small initial disturbances the system finally goes to stable fixed point at origin. As
ω is increased further the system goes away from origin into whats seems like a chaotic orbit
as seen in fig 9.

Figure 10: For ω = 1.9 seems to go into a periodic orbit.
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Figure 8: Initial disturbance was of the order of 10−3 and still we find a range of frequency
of small amplitude noise that takes the system to infinity As we show here with µ1 = 0.71,
µ0 = 0.1, ε = 10−3 and ω = 0.01.

Figure 9: The system with µ1 = 0.5, µ0 = 0.1, ε = 10−3 and l = 0.5. The system above
with ω = 1.2 seems to go into a chaotic looking orbit.
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Figure 11: For ω = 10.0 seems to go into a periodic orbit around the outer fixed point.

When the frequency is increased further we observe there is a small range of frequency
that again take it to origin. Further increasing the frequency takes the system into a
periodic orbit around the outer stable fixed point. This orbit is stable and system stays in
this periodic orbit as shown in fig 10.

Increasing frequency further, we go in a regime where the system goes into periodic
orbit around the outer fixed point. This periodic orbit is also stable, shown in figure 11. If
the frequency is still increased further, the system goes to origin again. Further increase in
frequency does not lead to any further change in this behavior.

7 Conclusion

Non-normal growth is observed for double and triple diffusion convection near the poly-
critical surface. This suggests that apart from shear flows non-normal growth can also
be important in double diffusive convection as a pathway to turbulence, as suggested in
Trefethen et al. (1993).

Non-normal growth along with the bootstrapping mechanism is not sufficient to take
our system away from stable fixed points. We thus considered the possibility of noise along
with the bootstrapping mechanism as considered in Gebhardt & Grossmann (1994). We
have clearly demonstrated that small noise along with the non-normal nature of system
leads to possible escape route out of the basin of attraction of stable fixed point for double
diffusive systems.

We observe a range of behavior exhibited by the system as the frequency of the noise
term is varied. This behavior appears similar to stochastic resonance in nonlinear systems
(c.f. Locher et al. (1998)). We are able to observe range of frequencies that can take the
system away from stable fixed points. We also observe that a very small disturbance with
correct noise frequency can cause the system to go away from the basin of attraction. This
supports the suggestions that rapid changes in ocean circulation may indeed be possible
even with small disturbances to current environment (c.f. Wiesenfeld & Moss (1995) and
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Ganopolski & Rahmstorf (2002)).
Results suggest that small noise have important effect even in linearly stable regime in

non-normal systems as non-normality amplifies the effect of noise. Further work is need to
consider effect of white noise and possible obtain a probability distribution of escape from
basin for different noise levels.
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