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1 Introduction

We have investigated the transmission of energy of barotropic Rossby waves from a flat
bottom region onto a gentle slope, on a β plane. We studied the simple case in which
topography is a constant slope and both regions are large enough so that the plane wave
approximation can be used. We have considered slopes gentle enough so that over one
wavelength (L), the variation in depth ( ~∇H L) is small compared to the total depth H or,
more precisely, h

H
is order Rossby number (ε). We also made use of the of the rigid lid

approximation which renders the fluid horizontally non-divergent,

(Hu)x + (Hv)y = 0. (1)

In our case, H = H0−h, where H0 is the reference depth and h is the topographic elevation.
A mass transport stream function can be defined:

Hu = −ψy, Hv = ψx, (2)

which is used to write the linearized form of the potential vorticity equation:

∇h ·
(

1

H
∇hψt

)

+

(

∇hψ ×∇h

(

f

H

))

· ẑ = 0. (3)

For our constant slopes this becomes:

ψxxt +
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H
hx + ψyyt +

ψyt

H0
hy −

f

H
hxψy +

f

H
hyψx + βψx = 0, (4)

where hx and hy are constants.
In the above equation we wish to retain only terms with similar orders of magnitude.

If we call X and Y the horizontal length scales of the wave in the x and y directions
respectively, and T its time scale, we get for the equation above:
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The second and fourth terms are small compared to the first and third ones and are
disregarded. The last two terms are not disregarded because we are working in the low
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frequency regime (ω << f). We realized after the summer that this approximation is
questionable and are still working on the consequences of removing it. We will however
keep to it in this report for we still have a very limited understanding of the dynamics that
would ensue otherwise.

With the approximation mentioned we get the equation:

∇2
hψt + [∇ψ ×∇Q] · ẑ, (6)

where the gradient of ambient potential vorticity ( ~∇Q) is the constant vector: ~∇Q =
(

f
H0

)

hx x̂+
((

f
H0

)

hy + β
)

ŷ.

If we choose the coordinate system so that the y-axis is aligned with ~∇Q, (6) becomes

∇2
hψt + | ~∇Q|ψx = 0, , (7)

which is the equation for planetary Rossby waves, with β substituted by | ~∇Q|. Because hx

and hy are constant, equations (6) and (7) have constant coefficients and admit plane wave
solutions. Substituting

Aei(kx+ly−ωt) (8)

into (7), we get the dispersion relation:

ω =
−| ~∇Q|k
k2 + l2

(9)

This expression shows that k and ω must have opposite signs. The k-component of the
phase velocity, the quotient ω

k
, is always negative, so phase velocity is always contained

in the half plane to the left of the ~∇Q. When | ~∇Q| points to the North, as is the case
for purely planetary Rossby waves, or for waves on a meridionally oriented slope growing
towards North, phase propagation always has a westward component.

As noted by Longuet-Higgins, (9) can be written:

(

k −
(

−| ~∇Q|
2xsω

))2

+ l2 =
| ~∇Q|2

4ω
(10)

showing that the locus of points that satisfy this relation for fixed ω is a circle with centre

(−| ~∇Q|
2ω

, 0), and radius r = |∇Q|2

4ω2 . If we choose the positive sign for ω we get the familiar
illustration depicted in figure 1. We will make extensive use of this geometric interpretation,
so we must look at it more closely.

First we notice that the vector defining the centre of the circle is | ~∇Q|
2ω

, rotated by π
2

anti-clockwise. The centre vector and the radius having the same magnitude, the circle is
tangent to the origin (this is a consequence of disregarding the displacement of the free
surface, the geometrical effect of the free surface is to shorten the radius while leaving the
centre vector unaltered). These circles are level curves of the function ω(k, l). The group
velocity, which is the gradient in wave number space of this function:

~cg =

(

∂ω

∂k
,
∂ω

∂l

)

=

(

|~∇Q|(k2 − l2)

(k2 + l2)2
,

2| ~∇Q|kl
(k2 + l2)2

)

(11)
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Figure 1: Longuet-Higgins’ geometrical interpretation of the dispersion relation for Rossby
waves on wave number space [1]. Points on the circumference are the values of k and l
allowed by the dispersion relation. The vectors from the origin represent wave vectors and
the ones from the origin to the centre give the direction of the group velocity.

must be radial. This becomes explicit if we rewrite (11) in polar coordinates:

(k, l) = K(cosα, sinα) (12)

cg =
| ~∇Q|
K2

(cos 2α, sin 2α) =
| ~∇Q|
K2

~r, (13)

where α is the angle measured clockwise from the x-axis and K2 = k2 + l2. We see that the
group velocity grows with |~∇Q| and decreases quadratically with the wave number. Figure
(2) illustrates clearly why the group velocity is smaller for larger K2.

We see from (13) that wave vectors lying on the right half of the circle have group
velocities with a westward component, while those on the other half have group velocities
with an eastward component and that the eastward moving waves are slower than the
westward moving ones.

1.1 Energy flux

If we multiply equation (9) by ψ and rearrange terms, we get the equation of conservation
of energy ([3])

∂

∂t

[

(∇ψ)2

2

]

+ ∇ ·
[

−ψ∇ψt −
1

2
| ~∇Q|ψ2x̂

]

= 0. (14)

The first term is the time variation of the kinetic energy, and the second is the divergence
of a vector, called the energy flux vector (~S). By substituting the plane wave solution (8)
into (14) and averaging over a wave period (〈〉) we see that
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Figure 2: Level curves of ω(k, l).

〈

~S
〉

= ~cg
A2K2

4
= ~cg 〈E〉 , (15)

the mean energy flux is the mean energy multiplied by the group velocity. The group
velocity however is inversely proportional to the mean energy (11), so

〈

|~S|
〉

= A2|~∇Q|, (16)

the magnitude of the energy flux for barotropic Rossby waves with a rigid lid is a function
only of the gradient of ambient potential vorticity of the medium [1, 2].

We now proceed to formally solve the problem of energy transmission of Rossby waves
from a flat bottom onto a straight slope. For clarity we will initially restrict ourselves to
dealing with a slope in the zonal direction, an x-slope. In interpreting the formal solution to
this and to the more general problem of a slope with arbitrary orientation, the geometrical
interpretation of the dispersion relation reviewed above will become very useful.

2 Solution for the x-slope problem

Region IRegion II

Figure 3: x-slope with impinging, reflected (region I) and transmitted (region II) waves

We want to find solutions to the equation:
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∇2ψt + βψx = 0; x > 0 region I (17)

∇2ψt + hxψy + βψx = 0; x < 0 region II (18)

where x = 0 is the boundary between flat bottom and slope. We note that the boundary has
been set perpendicular to ~∇h. If the slope were to have a component along the boundary,
there would be a step of variable height between the regions. We wish to restrict ourselves to
the cases where ~∇h is discontinuous but not h, so our slopes will always be perpendicular
to the boundary. The gradients of ambient potential vorticity for regions I and II are
illustrated in figure 4. We remark again, for it will be relevant later, that they have the
same along boundary component.

−β/2ω

∆

Q I

−β/2ω

∆

k

Q II

l

Figure 4: Ambient potential vorticity gradients for a flat bottom region and an x-slope with
f0hx/H0 = β.

Equation (18) can be integrated trivially in the two open regions x < 0 and x > 0
because it admits plane wave solutions. The physical situation we want to represent is a
plane wave impinging from region I onto region II (figure 3). In the stationary state we
must have the motion in region I represented by the sum of two plane waves, one impinging
and one reflected. The impinging wave must carry energy towards the boundary and the
reflected wave away from it. In region II there should be only a transmitted wave. The
kind of solution we seek is therefore:

ψi + ψr = Aej(kix+liy−wit) +Rej(krx+lry−wrt) x > 0 region I (19)

ψt = Tej(ktx+lty−wtt) x < 0 region II (20)

where the subscripts i, r, t, stand for impinging, reflected and transmitted respectively and
j =

√
−1. A,R, T are the constant amplitudes of the waves.

127



Only the parameters for the impinging wave are initially given. The others must be
found by matching conditions at the boundary (x = 0). First of all, we require continuity
of pressure and of mass transport at the boundary. If pressure were to be discontinuous,
infinite accelerations would ensue. The second condition is conservation of mass since we
cannot expect the boundary to be either a source or a sink of this quantity. These two
conditions are degenerate in this case, because the flow is barotropic, and both lead to the
expressions:

ψi + ψr = ψt , x = 0 (21)

Aej(liy−wit) +Rej(lry−wrt) = T ej(lty−wtt) (22)

For this to be true for all times and all y′s, we must have:

l ≡ li = lr = lt (23)

ω ≡ ωi = ωr = ωt (24)

A+R = T (25)

We must also determine kr and kt and for this we have the two dispersion relations:

ω =
−βkr

k2
r + l2

, x > 0 (26)

ω =
−βkt +

(

f
H0

)

hx l

k2
t + l2

, x < 0 (27)

The relations give quadratic expressions for k, so radiation condition must be applied to
decide upon the appropriate solution. That is, the value of kr is chosen so that the reflected
wave transmits energy eastward and the value of kt is chosen so that the transmitted wave
transports energy westward.

One more equation is needed to determine R and T . We obtain this by integrating
(18) across x = 0 and taking the interval of integration to zero. In this way we solve the
equation on the only point where it can’t be trivially integrated. Our equation has a finite
discontinuity in one of its, otherwise constant, parameters at x = 0. We want to know if
this will impose a discontinuity in the across boundary derivative of the stream function,
and if so, to quantify this jump.

lim
ε→0

(

∂

∂t

∫ −ε

ε

(

∂2ψ

∂x2
+
∂2ψ

∂y2

)

dx−
∫ −ε

ε
Qyψx dx+

∫ −ε

ε
Qxψy dx

)

= 0 (28)

(22) and (23) show that all derivatives in the y-direction are continuous, so the second
term in the first integral is zero and ψy can be removed from the third integral. Qy is also
continuous, so it can be removed from the second integral. This leaves us with the equation:

lim
ε→0

(

∂

∂t

∫ −ε

ε

∂2ψ

∂x2
dx−Qy

∫ −ε

ε
ψx dx+ ψy

∫ −ε

ε
Qx dx

)

= 0 (29)
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In our problem, Qx has a finite discontinuity in x = 0 (going from β in region I to β+ f
H0
hx

in region II). Its integral is therefore continuous and the third term is zero. If we suppose
a finite discontinuity in ψx, the second term is also zero and the first term quantifies this
discontinuity. Since this is the only term left on the right, the discontinuity must be zero.
ψx must therefore be continuous in our problem. From this condition we get the expression:

lim
x→0+

(ψi + ψr) = lim
x→0−

ψt kiψi + krψr = ktψt|x=0

kiA+ krR = ktT (30)

Substituting (25) into (30) we get the expression for the reflection and transmission
coefficients in terms of the k wave numbers:

R

A
=
kt − ki

kr − kt
,

T

A
= 1 +

kt − ki

kr − kt
. (31)

The problem is now formally solved, for we have as many equations as unknowns.
However, even for this simple case where we have fixed the orientation of the slope, the
solutions depend on three parameters: ω, l, hx, and it is hard to have a qualitative idea of
their behavior.

We have, for instance, to worry about the existence of real solutions for kt, given a value
of l, in (26) and (27). A complex kt would mean an evanescent wave in x, which would
transport no energy. In other words, it would mean total reflection. Because the dispersion
relations depend on both ω and hx the condition for total reflection will depend on these two
parameters. Furthermore, the reflection and transmission coefficients depend non-linearly
on l, ω and hx through kr and kt. Our main goal is to learn about the transmission of
energy up the slope, it would be interesting to have some understanding of the role the
different parameters play in this.

To gain a more intuitive grasp of the situation we will use the Longuet-Higgins circles.
We have two regions with different ~∇Q so we will need to consider two circles at the
same time. We will not be able to choose the coordinate system in which both dispersion
relations have their simplest forms (9), so one of the circles will appear rotated from its
familiar position shown in figure 1. Since the along boundary wave number is the same for
the three waves, it is convenient to choose the direction of the boundary as the y-axis. In
our case the direction of the boundary coincides with that of ~∇Q in region I. In figure 5 we
see, for this choice of axis and f

H0
hx = β, the Longuet-Higgins circles for regions I and II,

on the left and right respectively.
As we noted earlier, the centre vectors of the circles are perpendicular to the direction

of ~∇Q on the anti-clockwise sense, so all wave vectors (and phase velocities) lie to the left
of ~∇Q. The centres of both circles have the same k-coordinate, which is given by the along
boundary component of ~∇Q. The gradient is larger in region II, where there is the planetary
β and the slope, so the circle is larger.

Figure 6 illustrates our problem. The value of l (determined by the choice of impinging
wave) that all three waves must have in common is represented by the horizontal line
segment. The wave vectors for the three waves must be the intersections of this segment
with the circles. The direction of the group velocities for each wave are shown as the arrows
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Region IIRegion I

Figure 5: Longuet-Higgins circles for ~∇Q (region I) and ~∇Q = (β x̂,
(

f
H

)

hx ŷ) with
(

f
H

)

hx = β (region II).

from the circumference to the centre. Figure 5 shows how the reflected and transmitted
wave vectors are chosen on the basis of the direction of the group velocity. We also notice
that, upon crossing the boundary the group velocity veers to the south.

The issue of whether an impinging wave is able to propagate on to the slope is made
clear in figure 5, where the two circles are drawn in the same set of axis. For the same
frequency, the two media have different ranges of l which correspond to traveling waves. If
an impinging wave has a value of l within the interval that is not allowed in region II, the
wave will not be able to propagate on and there will be total reflection. All waves within
the top shaded area cannot propagate up the slope. Likewise all the waves in the bottom
shaded area would not be able to propagate from the slope to the flat bottom region.

The arrows in the figure show group velocities for the critical value of l, the value beyond
which there is total reflection. We see that for this value the transmitted wave grazes the
boundary. Beyond this value of l a transmitted wave would have to veer so much that it
wouldn’t even enter region II.

The fact that R and T depend on l through k and the importance of veering to this
problem suggest that the angle of the group velocity is a more suitable variable than l.

A k wave number can be written in terms of this variable as

k = kc − r sin γ (32)

where kc, the k coordinate of the center, is Qy, so

k =
1

2ω

(

~∇Q · ŷ − |~∇Q| sin γ
)

. (33)

Qy, the along boundary component of ~∇Q, is the same for both media.
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Figure 6: Longuet-Higgins circles for regions I (left) and II (right). The horizontal line
segments represent the value of l which is common to all three waves. The intersections
of this segment with the circles are the wave vectors that obey the dispersion relation for
that value of l in each medium. The arrows from the circumference to the centre represent
the group velocities for these vectors. For the impinging and transmitted waves the group
velocities have a component to the west.

The coefficients R and T , having the form (wave number)/(wave number) are indepen-
dent of ω. This is a consequence of the rigid lid approximation, which makes the centers of
the circles and their radii tangent to the origin and the wave numbers proportional ω.

In these coordinates, R is written:

R

A
=

−|~∇QII | sin γII + |~∇QI | sin γI

|~∇QI | sin γI + |~∇QII | sin γII

(34)

Having said this and looking again at figure 7 we see that the critical value of l is actually
better interpreted as a critical angle, or cutoff angle for transmission (γc). Remembering
that the l coordinate of the centre of the circles is given by Qx

2ω
and the radius by |~∇Q|, it

is easy to write (γc) in terms of the parameters of region II:

|~r| − QIIx

2ω
= |~r| sin γc (35)

sin γc = 1 − QIIx

|~∇QII |
(36)

We now calculate T (γ)
A

and R(γ)
A

for
(

f
H0

)

hx = β.

The results shown in figure 8 are rather surprising. Not only does the transmission
coefficient exceed 1, but it has a cusp at the cutoff angle, where we would expect energy
transmission to be zero! All of this makes one worry about conservation of energy.
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Figure 7: Total reflection: l wave numbers in the shaded areas are only allowed in one of
the regions.

However, going back to (14), we see that it is the divergence of the energy flux that
plays a part in energy conservation. We have no reason to expect accumulation of energy at
the boundary, so we must have zero divergence of ~S. As we see from (15) A, T and R give
information about the magnitude of ~S, but alone they don’t contain enough information to
account for its divergence.

For a plane wave, all fields are constant on a constant phase line, zero divergence at a
point is the same as zero divergence on a finite interval on these lines. The condition for no
accumulation of energy at the boundary is:

∫

∆l

~SI · n̂ dl −
∫

∆l

~SII · n̂ dl = 0 (37)
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Figure 8: Transmission and reflection coefficients for a an x-slope with Qx = f
H0
hx = β.
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We have seen that the group velocity veers when changing regions, so if we were to look
at the energy flux vector across the boundary it would be something like figure 9 a).

a) b)

d1

d2

γ
2

γ
1

1

Figure 9: A wave beam, represented here by the energy flux vector, changes its direction
and magnitude as it crosses the boundary in such away that its divergence is zero.

~S (which is proportional to the group velocity) veers when crossing the boundary and
the crossectional length of a beam is changed. For (37) to hold, the magnitude of |~S| must
change too. From (16) we see that |~S| depends on |~∇Q| and on the amplitude coefficient.
As the veering depends on the angle of incidence and |~∇Q| doesn’t, all the angle dependence
of |~S| must be contained in the amplitude coefficient.

Figure 9 b) shows that the length factor for a beam which makes an angle γ with the
vertical is sin γ. With this last information we arrive at the condition for no accumulation
of energy at the boundary:

(

A2 −R2
)

|~∇QI | sin γI = T 2|~∇QII | sin γII (38)

or

(

T

A

)2 sin γI

sin γI

|~∇QI |
|~∇QII |

+

(

R

A

)2

= 1 (39)

We call the terms on the left the transmitted and reflected energy fractions. In figure 10
we show the result of evaluating the LHS of (39) for all angles of incidence. Energy is in
fact conserved despite the awkward behavior of the amplitude coefficients seen in figure 8.

We are now ready to consider energy transmission onto the slope. Figure 11 shows
the transmitted and reflected energy fractions as a function of the angle of incidence γI .
We see that transmission does in fact go to zero at the critical angle (2 for this case, as

133



0.5 1 1.5 2 2.5 3
Γ

0.2

0.4

0.6

0.8

1

ET + R2

Figure 10: Sum of transmitted and reflected energy fractions calculated according to (39)

shown by the plots and as calculated from (36). We see also that energy transmission is
maximum for γI = π

2 . This corresponds to ~K = (0, 0), or a steady current. All energy from
a steady current is transmitted onto the slope. The veering is such that the steady current
remains perpendicular to ~∇Q in the new medium and the length factor for this veering
exactly compensates for the change in |~∇Q|, in equation (39). Transmission falls off as | ~K|
increases towards both sides on the circle.
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Figure 11: Transmitted and reflected energy fractions for the x-slope with Qx = f
H0
hx = β.

2.1 X-slopes of Different Steepness

Although we have up to now worked with a fixed value of hx, changing it brings no surprises.
As hx grows, ~∇QII gets closer to the x-axis and the circle for region II closer to being tangent
to the x-axis. This means that only impinging waves with a southerly group velocity
component are allowed on the slope (cutoff angle = π

2 ). However, large slopes violate

the assumption that hxL
H

is small, made to obtain our wave equation and we shouldn’t
really worry about them. Figure 12 a) shows plots of the transmitted energy fraction for
(

f
H0

)

hx = β, 2β, ... We see that the behavior in all these cases is qualitatively similar

but with a cutoff angle approaching π
2 and the transmitted energy fraction falling off more

rapidly with increasing | ~K| for the larger slopes. This is just as one would expect, for it
should be harder for energy to proceed up steeper slopes.
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Figure 12: Transmitted energy fraction for a x-slope with f0hx/H0 varying from −6β to 6β
and angle of incidence in relation to north (γ) varying from 0 to π.

3 Slopes with Different Orientations

Rotating the slope (and boundary) around brings more interesting consequences. By rotat-
ing the slope we can give the gradients of ambient potential vorticity in the different regions
any relative orientation, including parallel and anti-parallel. In figure 13 a) we show the
dispersion relations for a flat bottom region and a slope going up towards North. We see
that all l wave numbers allowed in region I are also allowed in region II, so some energy
can propagate up to the slope for all of wave numbers. As the relative angle between the
gradients increases, their dispersion relations move apart in phase space and the two re-
gions share less common l wave numbers. Transmitted energy fractions (TEF) for several
of these cases are shown in figure 14 a) as a function of the angle of incidence measured
from North (γ + θ). We see that as the angle between the gradients increases, the band
of waves allowed on the slope narrows, but the transmitted energy fraction is always 1 for
γ + θ = π

2 or incidence from the east, which corresponds to (k = 0, l = 0). Figure 14 b)
shows the transmitted energy fraction for all relative all orientations of the boundary and
angles of incidence.

If a slope that grows towards the south is steep enough to overcompensate for the
planetary β, the gradients of ambient potential vorticity for the two regions are anti-parallel.
As can be seen in figure 13 a) , this means that they have no waves in common, except
for (k = 0, l = 0). The steady current would be the only possibility of Rossby wave energy
exchange. However, this movement is East to West and therefore along the boundary. As
far as Rossby waves go therefore, the two regions are isolated. Dispersion relations for this
case are depicted in figure 13 b).
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North
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Figure 13: Dispersion relations for a flat bottom region and a) a y-slope growing towards
north, b) a y-slope growing towards south.

4 Concluding Remarks

This work was intended as a simple first step in the investigation of energy transmission
from mesoscale oceanic eddies onto the gentle continental slopes. In using the approxima-
tion of small depth perturbations we have confined ourselves to representing behavior not
far from the foot of these slopes. In this context, the rigid lid approximation is not an
additional restriction for it requires wavelengths to be small compared to the Rossby radius
of deformation, which for the flat bottom open ocean is of order 2000Km.

We believe the main weakness of this work is the neglect terms 2 and 4 in equation 4.
They are considered small when compared to the other slope terms (5 and 6) because, for
the low frequency regime we are working on, 1

T
<< f0. However, terms with corresponding

components of ~∇h have different spatial scales. For Rossby waves these spatial scales (X
and Y ) may be very different, invalidating the assumption on the relative sizes of the terms.
We have realized this after the summer was over and are now working on understanding
the effects of keeping the terms.
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