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1 Introduction

Stability of shear flows at high Reynolds number has been one of the cornerstones of hy-
drodynamic stability. A canonical problem which contains the basic features is that of a
shear layer - two streams of different velocity flowing past each other with different density.
Helmholtz[18] and Kelvin[21] were probably the earliest to consider evolution of distur-
bances in a stratified vortex sheet. While attempting a more general case Rayleigh[27]
approximated the shear layer by piecewise-linear velocity profiles.

A kinematic description of the instability for the unstratified vortex sheet was given by
Batchelor[1] purely based on vortex dynamics (figure 1(a)). Imagine perturbing the vortex
sheet by a sinusoidal disturbance so that the perturbed interface is located at η = sin kx.
In the neighbourhood of the nodes (A and B), the positive vorticity induces a clockwise
circulating velocity field. If ∂η/∂x > 0, the crest and trough move away from each other,
leading to vorticity being swept off from nodes like A, whereas if ∂η/∂x < 0, the crest
and trough come closer to each other, leading to vorticity being swept into nodes like B.
Thus, accumulation of vorticity at points like B takes place unboundedly in the linear,
non-dissipative scenario, giving exponential growth. In absence of stratification the vortex
sheet problem as studied by Helmholtz and Kelvin is unstable to infinitely large wavenum-
bers. This ill-conditioned nature of the system gets removed in Rayleigh’s problem with the
introduction of a length scale (figure 1(b)). Rayleigh’s problem consists of two interfaces
of vorticity discontinuity. The Kelvin-Helmholtz (KH) instability of a shear layer was the

(a) (b)

Figure 1: (a) Vortex sheet (b) Mixing layer
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(a) Mixing Layer - Lasheras and Choi (1988)

(b) The Meeting of Waters - Confluence of Rio Negro and Rio Solimões
near Manaus, Brazil to form the Amazon (Amazon Abyss, BBC)

Figure 2: Kelvin-Helmholtz instabilties

earliest demonstrations of how inviscid instabilities can occur due to presence of vorticity
extremum in the flow.
KH instability is commonly observed in nature. In atmospheric context clouds often help
to visualise them. In figure 2 KH instabilities are seen in a laboratory experiment and also
in rivers.

Though KH instability considers the two layers to be of two different density, for stable
stratification the role of gravity is purely stabilising. Taylor[32] and Goldstein[17] simulta-
neously showed how stable stratification can have a destabilising role when it interacts with
shear. Considering various multi-layer velocity/density profiles Taylor studied instabilities
arising out of interaction of vorticity and/or gravity waves. We will revisit one of Taylor’s
problems later in the analysis.
Subsequently to model a stratified shear layer relevant for geophysical problems, Holmboe[20]
considered Rayleigh’s piecwise-linear approximation with an embedded density interface at
the shear layer centre (figure 3). For weak stratification a KH like behaviour was observed,
instabilities stationary with respect to the flow. On increasing stratification a new class of
instabilities emerged - a pair of counter propagating waves known thereafter as Holmboe
waves. Unlike KH instability Holmboe waves are not easily visualised in nature due to the
nonstationary behaviour of the waves. They have been experimentally realised and consid-
ered to be present in exchange flows. Often a distinction is made between KH and Holmboe
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Figure 3: Stratified shear layer

waves based on the stationarity nature as one moves with the speed of the shear layer centre.
Such a classification though accurate in the symmetrical case becomes ambiguous in the
asymmetrical case. Recently[8] it was shown that a classification based on wave interactions
- vorticity-vorticity or vorticity-gravity - provides a consistent explanation.
Approaches towards understanding evolution of disturbances in stratified shear layers can
be mostly classified in two categories - Linear stability calculations and direct numerical
simulations (DNS). While doing linear stability studies if one restricts to piecewise linear
profiles then dispersion relations, eigenfunctions can be analytically computed. To model
realistic profiles if one considers the smoother counterparts then solving the formidable
Taylor-Goldstein equation (TGE) is the only recourse. For a complete nonlinear descrip-
tion beyond linear instability, DNS holds the key. DNS enables a complete exploration
of wide range of length and time scales in flows transitioning towards a turbulent state.
Having said that the computational cost and effort involved in a complete DNS severely
limits an exhaustive study in nonlinear dynamics of stratified shear layers, many questions
go unanswered. How does increasing stratification alter the nonlinear states in stratified
shear layers? Does the flow attain a nonlinear stationary state? Gravity waves interact in
presence of shear to give rise to Taylor-Caulfield instability, how does the nonlinear state
evolve? To answer many such questions full nonlinear simulations are needed. Is there a
reduced description of the governing equations which captures the essence of full numeri-
cal simulations while giving a stronger analytical handle on the physics? The goal of the
present work is to outline a reductive perturbation theory for stratified shear layers. The
methodology will rely on a previously used technique, the ‘vorticity defect’ method.

2 ‘Defect’ theory

Inviscid shear flow instabilities occur in presence of vorticity maximum, e.g. - KH. For
KH like flows one can immediately notice that the base-flow quantities vary across a very
small region. This is also true for stratified shear layers where besides vorticity, variations
of density occur over a small region. To obtain a reduced description we will try to exploit
the smallness of the shear-layer thickness. The perturbative technique to be adopted will
in spirit be akin to boundary layer theory. We will have an ‘outer’ region where the pertur-
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Figure 4: Velocity and density profiles with ‘defects’

bations will be assumed to obey linear, steady and inviscid dynamics and an ‘inner’ region
where nonlinearity, dissipation and unsteadiness will be important. A key assumption of the
analysis will be considering the base-flow quantities (velocity, density) to be monotonically
varying quantity with sharp variations or ‘defects’ of width ε at the shear layer centre.
While studying wake behind a airfoil, Gill[16] modelled the base-state to be a Couette flow

with slight distortions. This severely simplified the linear stability calculations and provided
integral dispersion relationships. Next Lerner and Knobloch[24] performed long-wavelength
stability studies on a distorted Couette flow. The slight modification to Couette flow was
assumed to arise due to finite amplitude perturbations. But it wasn’t until the works of
Balmforth and co-workers that the ‘defect’ model - a Couette flow with slight distortions
- got a strong theoretical foundations and its immense applications appreciated. Using
an analysis similar to critical layer theory del-Castillo Negrete et al.[15] (Balmforth et al.
[3]) showed that for inviscid shear flows one can reduce 2D Euler equations to a nonlin-
ear integro-differential equation for the ‘defect’ vorticity. Exploiting the ‘defect’ equations
analogy with the Valsov-Poisson equation1 explicit dispersion relations were obtained for
various distortion imposed on the Couette flow. Balmforth and Young[5] went ahead and
highlighted evaluation of nonlinear stationary states from the ‘defect’ equations. The lin-
ear viscous problem was addressed by Balmforth [6] and the intriguing connection between
viscous and inviscid eigensolutions was discussed in context to various ‘defect’ profiles. The
applicability of the approach for visco-elastic flows has also been studied[4]. In the present
work we will try to obtain better understanding of stratified shear layers aided by the ‘de-
fect’ theory.
Consider a Bousinessq fluid of density,

ρ(x, y, t) = ρm + δρ(x, y, t) (1)

The evolution equations, vorticity-buoyancy formulation, in the Bousinessq approximation
can be written in the following non-dimensional form,

∂ω

∂t
+
∂(Ψ, ω)

∂(x, y)
=
∂B

∂x
+

1

Re
∇2ω (2)

∂B

∂t
+
∂(Ψ, B)

∂(x, y)
=

1

ReSc
∇2B (3)

1Vlasov-Poisson equation describes time evolution of the distribution function of plasma consisting of
collision-less charged particles in the zero magnetic field limit.
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The horizontal and vertical coordinates have been non-dimensionalised by a characteristic
length-scale L0 and time by U0/L0, U0 being a velocity scale. Stream-function is non-
dimensionalised by U0L0. ω = ∇2Ψ and B = −gδρ/ρmL0/U

2
0 are the non-dimensional

vorticity and buoyancy respectively. Reynolds number, Re = U0L0/ν (ν is the kinematic
viscosity), denotes a ratio of inertial to viscous forces and Schmidt number, Sc = ν/κ (κ is
the mass diffusivity), provides a ratio of momentum to mass diffusivity. We will focus on
Sc→∞, the relevant regime for stratified shear layers2.
As evident in figure 4, velocity is assumed to be a localised ‘defect’ imposed on a Couette
flow and similarly buoyancy remains largely uniform but for a sharp variation at the ‘defect’
level. Thus if the variations occur over a length-scale ε, we can write,

Ψ = −1

2
y2 + ε2ψ(x, y, t) (4)

B = bm + ε2b (5)

Hence the vorticity-buoyancy equation can be reduced to,

∇2ψt + y∇2ψx + ε2(ψx∇2ψy − ψy∇2ψx) = bx +Re−1∇4ψ (6)

bt + ybx + ε2(ψxby − ψybx) = (ReSc)−1∇2b (7)

The above equations can be solved using matched asymptotic theory by splitting the flow
into an exterior region where base flow quantities remain uniform or vary monotonically
and an interior region corresponding to the ‘defect’.

2.1 Outer solution

The dynamics in the outer region is assumed to be steady, inviscid and linear in the leading
order. Another important assumption made regarding the outer solution is that of weak
stratification. It is assumed that the outer solution for ψ, in the leading order, is unin-
fluenced by buoyancy. As would become evident that in doing so we deal with a weaker
singularity in the outer problem. An assumption of these form becomes unphysical for
strongly stratified flows, scenarios beyond the scope of stratified ‘defects’.
A regular perturbation expansion of the solution in the outer region provides,

ψ = ψ0 + εψ1 + . . . (8)

b = εb1 + . . . (9)

Thus the leading order dynamics is governed by the following pair of equations.

y∇2ψ0x = 0, yb1x = 0 (10)

⇒ ∇2ψ0 = −2A(x, t)δ(y) (11)

Thus the outer solution behaves like an irrotational flow being forced by a vortex sheet, a
δ function singularity, at the ‘defect’ level - y = 0 (buoyancy also gets forced by a density

2In the context of passive scalar turbulence Sc → ∞ is known as the Batchelor regime. Such a regime
allows for rapid variations in passive scalar field due to stirring by a smooth velocity field.
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sheet). This necessitates a jump in tangential velocity (while maintaining continuity of
normal velocity),

[ψ0y]
y=0+

y=0− = −2A(x, t), [ψ0]
y=0+

y=0− = 0 (12)

As will be seen this jump in the outer solution will be smoothened out over a region ε by the
inner solution. If we had allowed for leading order buoyancy effects in the outer vorticity
equation, the flow would have been forced by a vortex dipole instead of a vortex sheet. The
consequence of these stronger singularity, a δ′ singularity, would have then resulted in a
jump in normal velocity. Weak stratification allows us to overlook such a possibility in the
present analysis.
Introducing Fourier transform of the streamfunction as,

ψ̃(k, y, t) = F [ψ(x, y, t)] =

∫ ∞
−∞

ψ(x, y, t)e−ikxdx (13)

equation 11 can be written as,

ψ̃0yy − k2ψ̃0 = −2Ã(k, t)δ(y) (14)

Thus one obtains,

ψ0 = F−1
[
G(k)Â(k, t)

]
(15)

where, F−1 denotes the inverse Fourier transform and the Green’s function, G(k), can be
computed for both unbounded and bounded domains (|y| 6 1) as,

G(k) =
1

|k|sech|k| sinh |k|(1− |y|), bounded (16)

=
1

|k|e
−|k||y|, unbounded (17)

Henceforth all analysis will be presented for the unbounded case but the results have been
extended to the bounded case too. The ‘defect’ analysis is not solely restricted to the outer
flow being Couette and can be extended to more general flows by the method of constructing
Green’s function for flow profiles with curvature[2].
Next we will regularise the discontinuity in outer velocity field by evaluating the inner
solution.

2.2 Inner solution

Similar to a traditional boundary-layer like analysis, the inner solution must contain at least
one of the physics that have been overlooked in the outer region - viscosity, nonlinearity
and unsteadiness. Working with our small parameter, the defect thickness ε, we define a
stretched vertical coordinate, η = y/ε and a slow time-scale τ = εt. It needs to be mentioned
that the method of analysis bears similarities with standard critical layer theories ([33],[31]).
Beyond the initial transients the O(ε2) nonlinear term acting on a critical layer of width
O(ε) becomes important after time O(1/ε). As would become clear that the ‘defect’ theory
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is considerably simpler than critical layer analysis. We pose the following expansion in the
inner variables,

ψ = ψ0(x, 0, t) + εφ1(x, η, τ) +O(ε2), (18)

⇒ ψy = φ1η + εφ2η +O(ε2), (19)

⇒ ∇2ψ = ε−1φ1ηη + ψ0xx + φ2ηη +O(ε) (20)

b = B(x, η, τ) +O(ε) (21)

From above equations it is evident that leading order inner solution, ψ0(x, 0, t), matches the
corresponding outer solution at y = 0. As mentioned before the discontinuity in tangential
velocity in the outer solution will be smoothed by the inner solution,

2A(x, t) = −
∫ ∞
−∞
Zdη (22)

where Z = φ1ηη is the leading order defect vorticity. The velocity jump equals the vorticity
integrated across the defect.
Substituting the expansion 18 in equations 6 and 7 and collecting the leading order terms
one obtains the ‘defect’ vorticity-buoyancy equations,

Zτ + ηZx + ΦxZη = Bx + λZηη, (23)

Bτ + ηBx + ΦxBη =
λ

Sc
Bηη, (24)

(Z,B)→ 0, as |η| → ∞

Φ̃ = − 1

2|k|

∫ ∞
−∞
Z̃dη, ⇒ H(Φ)x = − 1

2π

∫ ∞
−∞
Zdη (25)

where, H(.) denotes the Hilbert transform of a variable defined in terms of the following
Cauchy principal value integral,

H(u) =
1

π
−
∫

u(ξ)

ζ − ξ dξ (26)

and λ = (ε3Re)−1 is representative of the ratio of nonlinearity and viscosity. In critical layer
theory there exists a similar quantity, Haberman parameter, which denotes competition of
nonlinearity and viscosity.
Equations 23-25 are the ‘defect’ vorticity-buoyancy equations relevant for stratified shear
layer studies. During the course of reduction we have retained the necessary physics due
to unsteadiness, nonlinearity and dissipation. Though the obtained nonlinear integro-
differential equations appear more daunting than the governing equations we started off
with it would become clear that the ‘defect’ equations are more amenable to analytical
and numerical treatments. Similar equations have been derived in critical layer theories for
stratified shear flows [14].
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3 Conservation laws

The inviscid, nonlinear ‘defect’ equations (equation 23-24 for λ = 0) contains certain con-
served quantities, some deducible from evident symmetries in the problem and others not
so obvious ones. Lets us define a spatial average,

< . >=

∫ ∫
.dxdη

In absence of dissipation both average vorticity and buoyancy remains conserved,

< Z >τ= 0, < B >τ= 0 (27)

momentum remains conserved,
< ηZ >τ= 0 (28)

and energy also is conserved,

<
η2 − Φ

2
Z − ηB >τ= 0 (29)

As always is the case with ideal fluid besides the above ones there exists an infinitude of
conserved quantities - Casimirs. For 2D homogeneous fluid any functional of vorticity is a
conserved quantity. Enstrophy - a representative of vortex stretching and tilting - is one
such commonly used candidate. For stratified flows due to baroclinic generation of vorticity
enstrophy is no longer conserved. For stratified ‘defects’ one instead has the any functional
of buoyancy and product of vorticity with any buoyancy functional as the Casimirs,

< G(B) >τ= 0, < ZF (B) >τ= 0 (30)

The conserved quantities thus obtained help in obtaining the stationary states for the system
and also comment on its nonlinear stability. More importantly it also helps as a check in
numerical computations to ensure that the numerical method indeed conserve the necessary
invariants.

4 Inviscid linear stability

Earlier it was mentioned that previous studies on flow with slight distortions exploited the
simplicity of the model in deriving explicit integral dispersion relations. Conventionally
inviscid linear stability demands solution of Rayleigh equation or in the case of stratified
shear flow Taylor Goldstein equation (TGE),[

d2

dy2
− k2

]
ψ̂ =

Ū ′′ψ̂

(Ū − c) −
N2ψ̂

(Ū − c)2 (31)

where ψ̂ is the disturbance streamfunction, Ū the background base-flow, N =
√
−g/ρmdρ/dz

the BruntVäisälä (buoyancy time-scale), k is the disturbance wave-number and c is the
wave-speed. The relative strength of stratification vis-a-vis inertia is denoted by Richardson
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number, Ri = (NL0/U0)
2. Solution of the above boundary value problem, even numeri-

cally, is no easy task and analytical solutions can be obtained only for broken-line profiles.
The ‘defect’ model circumvents this difficulty with ease.
Consider the ‘defect’ vorticity and buoyancy to be decomposed of a base-state contribution
and a perturbation,

Z(x, η, τ) = F (η) + ζ(x, η, τ) (32)

B(x, η, τ) =

∫ η

N2(y)dy + β(x, η, τ) (33)

Substituting the above expressions in equations 23 and 24 and considering the linearised
equations one has,

ζτ + ηζx + rxFη = βx, (34)

βτ + ηβx + rxN
2 = 0 (35)

2r̂ = −k−1
∫ ∞
−∞

ζ̂dη (36)

On assuming a normal-mode form, ζ(x, η, τ) = ζ̂(η)eik(x−cτ), the eigenfunctions can be
expressed as,

β̂ = − r̂N2

(η − c) , (37)

ζ̂ = − r̂Fη
(η − c) −

r̂N2

(η − c)2 (38)

and the dispersion relation,

D(c, k;F,N) ≡ 2k −
∫ ∞
−∞

[
Fη

(η − c) +
N2

(η − c)2
]
dη = 0 (39)

This is the stratified version of the integral dispersion relation obtained in [3]. D is an
analytic function of c but for the real-axis where it has a branch-cut. The branch-cut gives
rise to the continuous spectrum, a common feature of inviscid shear flows. The presence
of the continuous spectrum contributes to transient growth in flows which otherwise are
modally stable - Orr mechanism being a well known example. Sometimes the dispersion
relation instead of having zeros in the principal complex plane, vanishes at points on dif-
ferent Riemann sheets. While doing the initial value problem this leads to observation of a
collective behaviour of the continuous spectrum as a single damped discrete mode - known
as Landau pole or quasi-mode. This damping, eponymously known as Landau damping in
plasma physics, is a purely inviscid phenomenon arising due to phase mixing. Quasi-modes
have been probed to understand the mysterious connection between the inviscid and vis-
cous initial value problem in the limit of vanishing viscosity. The present analysis will focus
purely on unstable modes and hence no longer address the above intriguing phenomena.
We will now compute dispersion relations for various stratified shear layer configurations.
Before proceeding on to calculations for both broken and smooth profiles a note can be
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made borrowing from Nyquist theory. For a closed curve C in the complex c plane, the
winding number,

1

2πi

∮
C

D′(c)
D(c)

dc = N-P (40)

where N is the number of zeros and P gives the number of poles of D(c) inside C. Considering
D an analytic function of c the winding number gives us the number of eigenmodes. Earlier
works on ‘defect’ theory like [3] and [6] elucidates how Nyquist theory can be used effectively
for the ‘defect’ model.

4.1 Holmboe instability

Holmboe instability occurs when there exists a density interface embedded in a mixing layer.
It is a popular model to represent instabilities arising due to horizontal shearing of density
interfaces. This classical instability, in the symmetrical case, exhibits a transition from
the stationary Kelvin-Helmholtz instability to the propagating Holmboe waves. Though
Holmboe waves are inherently difficult to visualise in nature due to their non-stationary
behaviour they have been observed in laboratory experiments - exchange flow between two
basins of different density being an example.

4.1.1 Broken-line profile

For a broken-line Holmboe profile denoted by the following defect vorticity and buoyancy
profile,

Fη = f [δ(η − η0)− δ(η + η0)], (41)

N2 = dδ(η) (42)

one obtains the dispersion relation,

c4 −
(

1− f

k
+

d

2k

)
c2 +

d

2k
= 0, η0 = 1, c = cr + ici (43)

It was previously mentioned that the ‘defect’ theory is suited to weak stratification cal-
culations. Thus the results obtained are representative of small Ri cases in the complete
problem. d determines the strength of stratification and a qualitative comparison is made
of contours of growth-rate in d−k plane with the one obtained from the solution of TGE for
a symmetric shear layer. The basic features are well captured by the present model (figure
5). One immediate observation is the differentiation of stationary (cr = 0) and propagating
instabilities (cr 6= 0).

4.1.2 Smooth profile

For smooth profiles the integral dispersion relation can be evaluated using Cauchy residue
theorem. The simplest profile to consider would be a Lorentzian.

Fη =
αf

π

[
1

(η + 1)2 + α2
− 1

(η − 1)2 + α2

]
, (44)

N2 =
αd

π

1

η2 + α2
(45)
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Figure 5: Holmboe instability. a) A broken-line profile, b) Contours of growth-rate (ci) in
d−k plane (f = 2), c) Growth-rate contours in Ri−k plane from a complete linear stability
calculations (Carpenter et al.[8])

For the Lorentzian profile the dispersion relation is identical to equation 43 with c in the
quadratic expression no longer being the complex wave-speed but instead replaced by c→
c+ iα sgn(ci).
A smooth profile which would be used in the numerical calculations and represents sharper
variations in flow quantities is a tanh profile.

F =
f

2

[
tanh

(
η − η0

∆

)
− tanh

(
η + η0

∆

)]
(46)

N2 =
d

2∆
sech2

( η
∆

)
(47)

One could note that the both the smooth profiles chosen above are functions which are
nascent delta functions, i.e. as α,∆→ 0 we obtain the generalised functions form as given
in equation 42.
From residue calculus we can evaluate the following integrals,

I1(∆, η0, c) =

∫ ∞
−∞

sech2

(
η − η0

∆

)
(η − c) dη = 2πi

[
sech2

(
c− η0

∆

)
s− 1

π2
Ψ(1)(α)

]

I2(∆, η0, c) =

∫ ∞
−∞

sech2

(
η − η0

∆

)
(η − c)2 dη = −2πi

∆

[
2sech2

(
c− η0

∆

)
tanh

(
c− η0

∆

)
s+

i

π3
Ψ(2)(α)

]
α =

1

2
− i

π∆
(η0 − c), s =

1

2
(1 + sgn(ci))

where Ψ(1)(α) and Ψ(2)(α) are polygamma functions - Ψ(n)(z) = dn+1(log Γ(z))/dzn+1.
Based on the above evaluated integrals the dispersion relation for the tanh Holmboe profile
can be computed explicitly as,

2k − 1

2∆
[f {I1(∆, η0, c)− I1(∆,−η0, c)}+ d I2(∆, 0, c)] = 0 (48)
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Figure 6: Holmboe instability. a) A Smooth profile, b) Variation of cr (dashed) and ci
(continuous) with stratification (d) for f = 2, k = 1,∆ = 1/3, η0 = 1

Though we have obtained an analytical dispersion relation for the tanh profile the numerical
evaluation of the integrals is more efficient than working with the polygamma functions.

Figure 6 shows the stationary and propagating nature of the instabilities for a set of
parameter values. Cases from the instability curves will be later visited during numerics.
An important question that numerics will try to answer is how does the nonlinear states
change as one increases stratification and transitions from a KH instability to Holmboe
instability.

4.2 Taylor-Caulfield instability

Holmboe instability arose when gravity waves interacted with vorticity waves. Taylor[32]
during the course of studying various broken line profiles observed that a stable stratification
composed of two density jumps gets destabilised if there is an imposed shear. This initially
surprising result can be understood as interaction of gravity waves facilitated by shear.

4.2.1 Broken-line profile

For Taylor-Caulfield instabilities there is no defect vorticity and instead one has variations
of defect buoyancy,

N2 = d[δ(η − η0) + δ(η + η0)]) (49)

As seen in the case of Holmboe instability one obtains polynomial dispersion relations for
broken-line profiles,

c4 −
(

2 +
d

k

)
c2 +

(
1− d

k

)
= 0, η0 = 1, c = cr + ici (50)
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Figure 7: Taylor-Caulfield instability. (a) A Smooth profile, (b) Growth-rate (ci) variation
with stratification (d) for k = 1, η0 = 1

4.2.2 Smooth profile

Similar to Holmboe case one can calculate stability characteristics for various smooth pro-
files. For a Lorentzian profile,

N2 =
αd

π

[
1

(η + 1)2 + α2
+

1

(η − 1)2 + α2

]
(51)

The dispersion relation is identical to equation 50 with c in the quadratic expression no
longer being the complex wave-speed but instead replaced by c→ c+ iα sgn(ci).
For a smooth tanh profile,

N2 =
d

2∆

[
sech2

(
η − η0

∆

)
+ sech2

(
η + η0

∆

)]
(52)

Once again the analytical form of the dispersion relation for can be written as,

2k − d

2∆
[I2(∆, η0, c) + I2(∆,−η0, c)] = 0 (53)

Figure 7 illustrates the stability characteristics for Taylor-Caulfield instability as obtained
from ‘defect’ theory. The TC modes are purely stationary waves.
Though there exists some linear stability calculations and DNS calculations very little is

known about the nonlinear states of Taylor-Caulfield instabilities. Next using numerical
solution of ‘defect’ equations we will try to explore the details.

5 Numerical solution

A significant advantage that the ‘defect’ theory offers over the complete Bousinnessq Navier-
Stokes equations is in numerical computation. As is commonly known that the notorious
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advective nonlinearity in Navier-Stokes serves as a severe bottleneck in full-fledged compu-
tations. The defect equations for Sc→∞,

Zτ + ηZx + ΦxZη = Bx + λZηη, (54)

Bτ + ηBx + ΦxBη = 0, (55)

(Z,B)→ 0, as |η| → ∞

Φ̃ = − 1

2|k|

∫ ∞
−∞
Z̃dη, ⇒ H(Φ)x = −1

2

∫ ∞
−∞
Zdη (56)

though nonlinear avoids the difficult nonlinearity ∂(φ1, φ1ηη)/∂(x, η) (φ1ηη = Z). In the
present form the ‘defect’ equation entails solving a set of advection-diffusion equations.
The method adopted in the present work relies on exploiting the similarities of the ‘defect’
equations with the Vlasov-Poisson equation and using a operator-splitting technique.

5.1 Operator splitting technique

The operator splitting technique used is based on the method outlined in [13] for solution of
Vlasov-Poisson equation and in [7] for studying critical layers in 2D vortices. This splitting
technique is also known as Strang splitting[25].
The integration over time-step [τ, τ + δτ ] is divided into three stages,

5.1.1 Advect in x for half time-step

Consider the advection in x in the buoyancy equation,

Bτ + ηBx = 0 (57)

for a time interval δτ/2. The exact solution is B(x, η, τ+δτ/2) = B(x−ηδτ/2, η, τ). Fourier
interpolation is used to perform the x advection - B̃(k, η, τ + δτ/2) = B̃(k, η, τ)e−ikηδτ/2.
For the vorticity equation,

Zτ + ηZx = Bx (58)

the solution can be similarly written in Fourier space as -

Z̃(k, η, τ + δτ/2) = Z̃(k, η, τ)e−ikηδτ/2 + ikδτ/2 B̃(k, η, τ + δτ/2)

The above calculations in Fourier space is done using the FFT/IFFT routine in Matlab.

5.1.2 Advect in η for a complete time-step

Both buoyancy and vorticity obeys identical η advection equation,

Bτ + ΦxBη = 0 (59)

Φ̃ = − 1

2|k|

∫ ∞
−∞
Z̃dη (60)

Before performing the advection Φx is computed by integrating Z in η, once again in Fourier
space. The η advection occurs with a velocity Φx - B(x, η, τ + δτ) = B(x, η−Φxδτ, τ). Due
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to lack of periodicity we use linear/cubic spline interpolation in η instead of Fourier. The
same method is followed for advection of Z. If advection happens into the domain from
both above or below the computational domain then it is assigned the far-field equilibrium
value.

5.1.3 Advect in x for another half time-step

The first step is repeated for another half time-step, δτ/2. One can combine the first and
third step and do two steps instead - advect in η for δτ followed by advection in x for
another δτ .

To account for diffusion of vorticity (λ 6= 0) a forward in time Euler integration is car-
ried out with diffusion operator in η discretized using finite-difference technique.

The computational domain consists of (x, η) ∈ [0, 2π] × [−ηmax, ηmax]. ηmax is fixed at
10 so that the vertical extent is at least 5 times larger than the shear layer and the far-field
is ensured to remain uninfluenced by the dynamics in the shear layer. The choice of time-
step, δτ , and horizontal discretization, h = 2π/N , (N is the number of Fourier modes used)
is determined by the following stability condition,

|ηmax|∆τ 6 h (61)

For the present work N has been chosen to either 256 or 512 and the time-step, ∆τ =
1×10−4, 5×10−4. The vertical discretization, ∆η, is chosen so as to obey the von Neumann
stability criteria,

λ∆τ

(∆η)2
6

1

2
(62)

∆η = 0.01, 0.005 is used in the calculations. λ, an estimate for momentum diffusion, has
been widely varied from 0.05 − 10−4. All numerics reported hereafter are for λ = 10−3.
To instigate instabilities in the flows the base-state is initially seeded with a disturbance
of the form e−η

2
cos kx of magnitude 0.1% of the base-state maxima. The η interpolation

has been done using linear interpolation. The interp1 command in Matlab has been used
for the purpose. For stratified KH (section 5.3.1) a grid resolution of 256× 2001 has been
used with a time-stepping of 5 × 10−4. The remaining calculations have been done on a
512× 4001 grid with ∆τ = 1× 10−4.

5.2 Analytical comparisons

To check the efficacy of the operator splitting technique a comparison is made between the
numerical solution and analytical solution known for a passive scalar advection equation.
The passive scalar advection equation,

χτ + ηχx + 2χη cos 2x = 0 (63)

was studied by Stewartson[31] in the context of critical layers. The above equation can be
solved using method of characteristics and drawing analogy with motion of pendulum. For
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(a) t = 1 (b) t = 2

Figure 8: Comparison of analytical and numerical results for the passive scalar problem at
x = 3π/4. χ is χ(3π/4, η, 0) = 1/(1 + η2)

x = π/4 or 3π/4 one can obtain explicit expressions for χ. At x = 3π/4 if initially the
distribution of χ is χ(3π/4, η, 0) = f(η) then the solution at arbitrary times will be[7],

χ

(
3π

4
, η, τ

)
= f

(
2 sgn(η)√

m
dn

(
K(m)− 2τ√

m

))
, m =

4

4 + η2
(64)

where dn is the Jacobi elliptic function and K(m) the complete elliptic integral of first
kind. Figure 8 shows the good agreement between numerical and analytical results for a
Lorentzian initial condition. The agreement starts deteriorating with time due to generation
of increasing fine-scales.

5.3 Holmboe instabilities

By increasing stratification we will try to explore various nonlinear dynamics for instability
scenarios occurring in Holmboe instabilities starting from stratified KH and proceeding on
to pure Holmboe waves. For the purpose of exploring various nonlinear states the tanh
model discussed before is revisited.

F =
f

2

[
tanh

(
η − η0

∆

)
− tanh

(
η + η0

∆

)]
(65)

N2 =
d

2∆
sech2

( η
∆

)
(66)

f = 2, k = 1,∆ = 1/3, η0 = 1 are the parameters maintained identical for all Holmboe
simulations. We choose 3 values of d. d = 0.1, 1.5 & 8. As visible from figure 6, d = 0.1
denotes stationary stratified KH waves in linear regime, d = 1.5, 8 denote linear propagating
Holmboe waves (d = 8 is not shown in the figure). We will try to find how the nonlinear
states behave for these cases. Does a linear Holmboe wave remain so always howsoever
weak the stratification may be?
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5.3.1 Stratified KH (d = 0.1)

Kelvin-Helmholtz in presence of weak stratification contains all the usual traits of the un-
stratified version - growth of instability waves, roll-up of the shear layer, vortex nutation
(the horizontal rocking of partially form cat’s eye) and finally culminating with the cele-
brated cat’s eye pattern or the KH billow. Besides the weakened growth-rate due to the
stabilising effect of stratification the stratified version exhibits intense stirring and mixing
of the buoyancy field. 3D effects like elliptical instability of the billow and hyperbolic in-
stability of the braid also emerge later in the evolution. Interested reader can find detailed
discussions in the article by Caulfield and Peltier[12].
Figure 9 shows the evolution of buoyancy (B) and vorticity (Z) field at different instants
of time. Figure 9(a)-(b) is a snapshot when the flow exhibits finite amplitude waves just
prior to the roll-up. (c)-(d) is at a stage during the formation of the billow. The flow has
departed from linear stability predictions and vortex nutations are observed at this stage.
Finally in figure 9(e)-(f) the well homogenised KH billow is visible. Figure 10 shows the
time-evolution of < |ψ|2 >1/2, a measure of disturbance amplification. Signatures of the
features discussed above can be seen in the time-trace.

5.3.2 Pure Holmboe (d = 8)

Next we explore a case where the flow is buoyancy dominant and the shear layer dynamics
are very different from KH. For strongly stratified shear layers the flow exhibits propagating
Holmboe instabilities. They are identified by oppositely travelling cusps which spews fluid
from one region to other. Compared to a KH billow the Holmboe waves are highly inefficient
in mixing. The dynamics is very often given by the beating phenomena of the two Holmboe
waves. Laboratory experiments on Holmboe waves have been done by Lawrence et al.
[22], Pouliquen et al.[26] and several researchers thereafter. Efforts towards using DNS to
understand Holmboe wave dynamics was done by Smyth and co-workers ([28], [29] and
[30]) amongst others. A recent work by Carpenter et al.[9] considers both experimental and
numerical simulation aspects of the problem.
From figure 11 we observe that the ‘defect’ numerics are adept at capturing the well-known
traits of Holmboe instability. Linear stability predicts presence of 2 unstable modes of same
growth-rate but opposite phase-speed. As expected the numerical solutions do exhibit the
beating phenomena between these 2 waves. As visible clearly from figure 11(c)-(d) onwards
both the buoyancy and vorticity field has presence of elongated cusp-like structures and
one can see both waves before moving past each other. Even at a much later time (figure
11(e)-(f)) the cusps refuse to disappear. If one takes a look at the evolution of disturbance
amplitude, < |ψ|2 >1/2, (figure 12) the persistent beating pattern is immediately obvious.
One cannot also help but notice in figure 11(e) the inefficient nature of mixing of the
buoyancy field by Holmboe waves.
A qualitative comparison of the buoyancy field during Holmboe instability computed using
‘defect’ numerics with those obtained from experiments and 3D DNS3[9] can be seen in
figure 13. Though the experiments and numerics are not in the exact parameter regime
as the ‘defect’ simulation, it is reaffirming to observe the present calculations ability to

3Both experiments and numerics were done for Reynolds number, Re=630, Richardson number being 0.3
and Prandtl number (temperature equivalent to Sc) kept at 700 for experiment and 25 for numerics.
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(a) B, t = 7 (b) Z, t = 7

(c) B, t = 12 (d) Z, t = 12

(e) B, t = 80 (f) Z, t = 80

Figure 9: Vorticity and buoyancy fields at different instants of time for stratified KH insta-
bility, f = 2, d = 0.1, k = 1,∆ = 1/3, η0 = 1.
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Figure 10: Evolution of disturbance amplitude for stratified KH. ci = 0.9035

reproduce the principal signature of the shear layer with its cuspy arms as visible in others.

5.3.3 Holmboe-KH transition (d = 1.5)

Will the persistent counter-propagating cusps be present irrespective of how weak the strat-
ification is as long as linear stability predicts them? Simulations for d = 1.5 as seen in figure
14 answers in negative. d = 1.5 is away from the critical stratification (dcrit = 0.5) required
for transition from KH to Holmboe as predicted by linear stability. Cusps get formed as
expected but as visible in figure 14(a)-(b) the cusps while moving past each other interact
nonlinearly and lock each other. Later (figure 14(c)-(d)) these locked waves overturn lead-
ing to stirring of the buoyancy field leading towards a KH billow-like stage ((e)-(f)). One
can find reference to such nonlinear locking and subsequent overturning/mixing in the ex-
periments of Hogg and Ivey[19]. It is encouraging to see that the reductive model obtained
can capture such intricate nonlinear dynamics at very low computational cost.

5.4 Taylor-Caulfield (TC)

Instability due to interaction of gravity waves via shear was one of the intriguing aspects of
Taylor’s (1931) analysis. It belied conventional belief that one needed an vorticity maxima in
the flow or unstable stratification to induce instability in stratified shear flow. Moreover the
observations of staircase formation in shear flows provides a strong motivation to understand
how do multilayer density profiles interacts with shear. Though Taylor introduced the
problem as a canonical stratified shear intability it wasn’t until through a series of papers
by Caulfield and co-workers (linear stability[10], experiments[11] and DNS[23]) that a great
deal was known about the interaction of multilayer density profiles with unbounded shear
and mixing layer. The present section will be focused on unbounded shear while mixing
layer will be reserved for the next section.
The profile chosen for instability corresponds to the one already dealt before in the linear
stability study -

N2 =
d

2∆

[
sech2

(
η − η0

∆

)
+ sech2

(
η + η0

∆

)]
(67)
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(a) B, t = 13 (b) Z, t = 13

(c) B, t = 21 (d) Z, t = 21

(e) B, t = 75.5 (f) Z, t = 75.5

Figure 11: Vorticity and buoyancy fields at different instants of time for pure Holmboe
instability, f = 2, d = 8, k = 1,∆ = 1/3, η0 = 1.
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Figure 12: Evolution of disturbance amplitude for pure Holmboe instability. ci = 0.4005

(a) ‘Defect’ theory

(b) Experimental results

(c) 3D DNS

Figure 13: Qualitative comparison of buoyancy field as obatined from ‘defect’ theory and
that of both experiments and DNS (Carpenter et al.[9])

375



(a) B, t = 13.5 (b) Z, t = 13.5

(c) B, t = 21 (d) Z, t = 21

(e) B, t = 62.5 (f) Z, t = 62.5

Figure 14: Vorticity and buoyancy fields at different instants of time for Holmboe-KH
transition, f = 2, d = 1.5, k = 1,∆ = 1/3, η0 = 1.
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Figure 15: Evolution of disturbance amplitude for Holmboe-KH transition.ci = 0.5537

for the parameters d = 5, k = 1,∆ = 1/3, η0 = 2. The base-state has been seeded with
purely buoyancy perturbation and vorticity gets produced purely due to baroclinic effects.
During the linear instability stage the baroclinically generated vorticity from the initial
conditions gets accumulated at the density interfaces and amplifies (figure 16(a)-(b)). Once
the stationary TC waves get nonlinearly saturated the buoyancy forms a billow which too
exhibits nutation (figure 16(c), (d) and (f)). The billow formation in TC instability does
not involve the extensive overturning as observed in stratified KH but is a more efficient
mixing process than pure Holmboe waves (figure 16(e)).

5.5 TC-Holmboe transition

Finally let us consider a 3-layer density profile embedded inside a mixing layer. The extent
of the density layer is taken to be smaller than that of the mixing layer (figure 17).

F =
f

2

[
tanh

(
η − η2

∆

)
− tanh

(
η + η2

∆

)]
(68)

N2 =
d

2∆

[
sech2

(
η − η1

∆

)
+ sech2

(
η + η1

∆

)]
(69)

Simulation has been carried out for f = 2, d = 4, k = 1,∆ = 1/3, η1 = 1, η2 = 2. Linear
stability predicts 3 unstable modes - a faster growing stationary TC mode and a pair of
slowly growing propagating Holmboe wave. Figure 18(a)-(b) shows the formation of a billow
in the initial stages which starts spewing out cusps along its cusps ((c)-(d)). This cuspy
billow persists and once again a typical Holmboe feature - beating amplitude pattern (figure
19) - can be seen. Thus if one were to do an experiment on such a profile, a propagating
instability would be observed despite linear stability making predictions for a stationary
billow. Exploration of such interesting scenarios with great ease was made possible by
virtue of working with the ‘defect’ equations.

6 Nonlinear stationary states

For stratified KH and TC instabilities the time-trace for < |ψ|2 >1/2 seems attain a sta-
tionary state but for a viscous decay (figure 10 and 16(f)). A qualitative argument for a
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(a) B, t = 9.5 (b) Z, t = 9.5

(c) B, t = 72 (d) Z, t = 72
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(f) Evolution of disturbance amplitude for Taylor-
Caulfield instability, ci = 0.5804

Figure 16: Vorticity and buoyancy fields at different instants of time for Taylor-Caulfield
instability, d = 5, k = 1,∆ = 1/3, η0 = 2.
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Figure 17: Density layer embedded in a mixing layer (TC-Holmboe transition)

stationary state also receives support when one observes the buoyancy and vorticity plots
at the final time computationally attained (figure 9(f) and 16(c)). A time evolution of the
plots show that they are remarkably static. Can one provide quantitative confirmations to
such guesses?
Let us consider the vorticity-buoyancy defect equation under inviscid, steady4 assumptions,

ηZx + ΦxZη = Bx (70)

ηBx + ΦxBη = 0 (71)

The exact solutions of the above equations are,

B = P(E), (72)

Z = Q(E) + ηP ′(E) = Q(E)− Bη, (73)

where, E = −(η − c)2
2

+ Φ

c being the wave-speed of the state. P and Q are arbitrary functionals of the total stream-
function, E . Thus any nonlinear stationary state needs to obey the above functional re-
lationship. We go ahead and try applying this diagnostic on both stratified KH and TC
instabilities (c = 0 in both cases).
At every instant of time besides Z and B the total streamfunction, E , is also computed.
Thus at every grid point (xi, ηk) values of B,Z & E are known. We construct pair of points
- (Eik,Bik) and (Eik, (Z + Bη)ik). Next all the (E ,B)[(E , (Z + Bη))] pairs are plotted in the
B−E [(Z +Bη)−E ] planes. If there indeed exists a functional relationship then the scatter
of points should collapse on to a curve. That would be a confirmation that the obtained
solution is indeed approaching a nonlinear stationary state.
First it is applied on stratified KH (section 5.3.1). As visible from figure 20 the initial
functional dependence gets broken and there is a prominent scatter during an intermediate
time - an instant of strong instabilities (figure 20(c)-(d)) - before approaching towards a
curve (figure 20(e)-(f)). The near horizontal arm(s) in both the buoyancy and vorticity
plots corresponds to the uniform region outside the shear layer. From the expression of the

4If the state is moving with a constant wave-speed c then a co-moving reference frame is considered.
Though not presented here such scenario was observed with simulations for asymmetric stratified shear
layer. One of the Holmboe waves is then preferred and the system translates with a constant speed.
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(a) B, t = 10.5 (b) Z, t = 10.5

(c) B, t = 14.5 (d) Z, t = 14.5

(e) B, t = 65.5 (f) Z, t = 65.5

Figure 18: Vorticity and buoyancy fields at different instants of time for TC-Holmboe
transition, f = 2, d = 4, k = 1,∆ = 1/3, η1 = 1, η2 = 2.
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Figure 19: Evolution of disturbance amplitude for TC-Holmboe transition. ci = 0.807

total stream-function, E , one can see why it should be large and negative outside the shear-
layer. The vertical region, which hosts most of the dynamics corresponds to the defect.
Also the locations from where points seem to spew out vertically, represent the hyperbolic
points in the flow. In the last available buoyancy plot, figure 20(e), the bulbous head is
representative of the cat’s eye region of the flow. As visible from figure 9(e) the B field has
not homogenised completely and there is signature of a dipole-like structure in the cat’s
eye, which contributes to the bulge.
As seen from figure 21 similar observations are also true for a Taylor-Caulfield case (section
5.4).

Having identified the nonlinear structures the nonlinear stability of the stationary states
can be investigated. If we look for stationary points of the energy under the constraints
that it has to obey - the conserved quantities determined previously (section 3) - we have
the following ‘Hamiltonian’ (we defer from calling the system Hamiltonian since we have
not checked for the Poisson bracket structure for it),

H =<
η2 − Φ

2
Z − ηB − cηZ + F (B) +

c2

2
Z + ZG(B) > (74)

where < . > denotes average over entire space as defined before. The stationary points of
the system are,

δH

δZ = 0, ⇒ E = G(B), ⇒ B = P(E) (75)

δH

δB = 0, ⇒ Z =
η − F ′(B)

G′(B)
= Q(E) + ηP ′(E) (76)

confirming what was mentioned in the beginning of this section. Here δH/δZ is the func-
tional derivative of the functional H. To check stability properties we need to check the
second variation H.

δ2H = < −δψδZ + {F ′′(B) + ZG′′(B)}(δB)2 + 2G′(B)δZδB >

= < {δZ + G′(B)δB}2 + {−δψδZ − (δZ)2}+ {F ′′(B) + ZG′′(B)− (G′(B))2}(δB)2 >
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Figure 20: Nonlinear stationary state diagnostics for stratified KH instability. Time evolu-
tion of the dependence of B with E is shown in (a), (c) and (e) and that of Z − ηB′ with E
in (b), (d) and (f).
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Figure 21: Nonlinear stationary state diagnostics for Taylor-Caulfield instability. Figure
description same as figure 20.
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In this form a comment cannot be made about nonlinear stability as δ2H is indefinite. But
if
∫
dxdη{−δψδZ − (δZ)2} > 0 is positive definite then the condition for stability will be -

{F ′′(B) + ZG′′(B)− (G′(B))2} > 0

Now the question is under what cases is the assumption,
∫
dxdη{−δψδZ−(δZ)2} > 0, true.

In ‘defect’ theory, for an unbounded domain, ψ and Z can be connected in Fourier space
as,

ψ̂(k, t) = − 1

2k

∫
Ẑ(k, η, t)dη (77)

Thus using Parseval’s theorem we have∫
dx dη{−δψδZ − (δZ)2} > 0 (78)

⇒
∫
dk dη{−δψ̂δẐ∗ − |δẐ|2} > 0 (79)

⇒
∫
dk

{
1

2k

∣∣∣∣∫ dη δẐ

∣∣∣∣2 − ∫ dη|δẐ|2
}
> 0 (80)

Presently a detailed study in the above aspects is lacking but it is hypothesized that there
would exist a band of wavenumbers in which a stratified shear flow, modelled by ‘defect’
theory, will be stable. For higher wavenumbers one can always find instability.

7 Conclusion

Exploiting the sharp variations present in stratified shear layers which occurs over small
regions, ‘defect’ vorticity-buoyancy equations have been derived. This equation maintains
all the necessary physics - unsteadiness, nonlinearity and viscosity. Linear stability cal-
culations using the ‘defect’ equations becomes significantly convenient with the present
equations. But the big strength of ‘defect’ equations was found to be in doing nonlinear
calculations for various stratified shear layer profiles. Unlike conventional numerics done
for Bousinessq Navier-Stokes equations the ones for ‘defect’ equations can be done with
minimum computational effort.
We have been able to explore some interesting cases concerning nonlinear evolution of strat-
ified shear layers. Though a great deal is known about the stratified KH instability, we were
able to address some intriguing questions regarding the transition from KH instability to
Holmboe waves and also whether a Holmboe instability persists nonlinearly with decreasing
stratification. Very little is known about the nonlinear dynamics of Taylor-Caulfield insta-
bilities. An effort has been made to probe TC instability in greater detail while working
with ‘defect’ equations. Coexistence of a TC billow with a Holmboe cusp was also observed
while studying density layers embedded in mixing layer.
A diagnostics was used with success to identify nonlinear stationary structures in stratified
KH and TC instabilities. Motivated by visual arguments a check was done on the buoyancy,
vorticity and total streamfunction field to determine if the flow is attaining an invariant
form. Efforts to perform nonlinear stability have so far been inconclusive.
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Figure 22: Time evolution of the scalar variance

Being built for flow with sharp interfaces or local distortions, the ‘defect’ theory has immense
potential for stratified shear layer studies. TC instabilities is far from being well-understood
and it will be very interesting to explore a wide range of parameter space armed with ‘defect’
theory. An aspect completely overlooked in the present analysis is the estimation of mixing
in the considered flows. Since Sc → ∞ was the domain of interest an estimate of stirring
was made based on the scalar variance, < |∇B|2 >. A low value of < |∇B|2 > denote
homegenisation of the scalar field. Figure 22 does indeed highlight an already discussed
aspect, based on visual grounds, of mixing/stirring efficiency being maximum for stratified
KH, followed by TC and then Holmboe. A more careful analysis needs to be done in this
regard and comparisons made with existing DNS and experimental results.
The ‘defect’ equations are amenable to analytical approaches more easily than the govern-
ing equations from which they have been derived. We haven’t really used this to obtain
the solutions in the nonlinear states in presence of dissipation. A quasi-steady critical layer
theory approach is being investigated under the framework of ‘defect’ equations to answer
the asymptotic form of the nonlinear stationary states. Finally a potential future work
which has been left out from the present study is the study on the viscous spectrum, issue
of quasimodes and transient growth.
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