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1 Introduction

In systems with chaos one is often left bewildered on how to make sense of its dynamics.
The extreme sensitivity to initial conditions renders our quantitative predictions useless,
and yet there are often qualitative features that are robust to our ignorance. Even though
chaotic dynamics are described by deterministic procedures, its unpredictability in the long
run forces us to look at statistical quantities of interest; means, variances, correlations, or
even the distribution of the state variables.

Normally one calculates these chaotic statistics by running long simulations, a brute
force approach. Ideally one would like a faster method of obtaining statistics and, more
ambitiously, understanding the structures that lead to the observed chaotic statistics.

Lately there are programs that try to exploit small noise limits and large deviation
theory in order to provide insight into the equations of motion [4]. Here one first formulates
a stochastic version of the state equations of interest, thus recasting the problem as one
of stochastic differential equations. Fokker-Planck equations and path integrals now come
into play as tools of investigation.

The goal of this WHOI: GFD 2015 project is to examine the stochastic version of chaotic
deterministic systems in order to see whether or not the noiseless limit may be exploited to
further understand the underlying deterministic dynamics. We will look at chaotic systems
and present instanton calculations as well as their interpretation. In light of the results we
comment on the applicability of the instanton formulation to turbulent flows.

2 Background

The necessary background to understand the instanton approach requires an understand-
ing of random variables, multivariable calculus, recurrence relations, differential equations,
asymptotics, and calculus of variations. The details are technical, but absolutely neces-
sary to grasp the instanton formulation and interpretation. The excellent review article by
Grafke et al. [3] covers the basics, but we shall go over them in more detail.



2.1 Path integrals

During the 2015 summer at the WHOI: GFD program we learned how to make sense of
stochastic differential equations with delta correlated Gaussian white noise,

ẋ = f(x) + εξ,

where ε ∈ R is the noise strength, by considering it as the N → ∞ limit of the Euler
recursion relation

Xn = Xn−1 + ∆tf(Xn−1) + ε
√

∆tGn.

Here ∆t = T/N , T is the “endtime”, and each Gn for n = 1, 2, ..., N is a normally identically
distributed Gaussian random variable with mean zero and variance one. We think of ~X =
(X1, ..., XN ) as the path, an element Xn as a position, and X0 specifically as the starting
position. Although each step of our recursion relation is a Gaussian random variable with
a mean (or drift) given by the deterministic trajectory Xn−1 + ∆tf(Xn−1) and variance
ε
√

∆t, the statistics of Xn are highly influenced by its history and the form of f , possibly
leading to deviations from Gaussian statistics.

For a given stochastic process we are generally interested in observables that depend in
some way on the “path” ~X, for example, the distribution of the position at the endtime
XN . We would like an expression for the density of ~X in order to more conveniently
calculate such quantities. This may be done by observing that the recursion relation is
a change of variables from Gaussian random variables ~G = (G1, G2, ..., GN ) to the path
~X = (X1, X2, ..., XN ) given by

Gn =

(
Xn −Xn−1

∆t
− f(Xn−1)

) √
∆t

ε

The Jacobian of the transformation is a lower triangular matrix[
∂ ~G

∂ ~X

]
ij

=


1

ε
√

∆t
if i = j

− 1
∆t − ∂xi−1f if i− 1 = j

0 otherwise

from whence we can calculate the determinant as the product of the diagonals

det

[
∂ ~G

∂ ~X

]
=

(
1

ε
√

∆t

)N
.

We can now leverage our knowledge of Gaussian distributions and use our change of
variables calculation to give an expression for the probability density ρ in terms of the
path,

ρ(~g)dV = e−
1
2

∑N
n=1(gn)2

N∏
n=1

[√
1

2π
dgn

]
⇔

ρ(~g(~x))dV = e
− 1

2ε2

∑N
n=1

(
xn−xn−1

∆t
−f(xn−1)

)2
∆t

N∏
n=1

[√
1

2π∆tε2
dxn

]
.



We use the lower case to denote a specific realization of the random variable. An inter-
esting feature of this reformulation is that the deterministic trajectory, given by xn+1 =
xn + ∆tf(xn) is the path that is given the most amount of weight and where the devia-
tions from determinism are penalized by an exponentially weighted factor that is inversely
proportional to the square of the noise strength ε. In the small noise limit this implies that
nondeterministic paths are highly unlikely.

The path integral is the “N →∞” limit of our finite path space integral, leading to the
density

e
− 1

2ε2

∑N
n=1

(
xn−xn−1

∆t
−f(xn−1)

)2
∆t

N∏
n=1

[√
1

2π∆tε2
dxn

]
“

limN→∞= ”e−
1

2ε2

∫ T
0 (ẋ−f(x))2dtD[x(t)]

where the differential element D[x(t)] has the normalization factor buried in it. The action
in the argument of the exponential is known as the Friedlen-Wentzell action and will be the
central object of concern for the calculations in this document. This will be expanded upon
later.

If we are only interested in the distribution of our path at the endtime x(T ), we may
formally obtain it by considering

ρ(x(T ))dx(T ) = lim
N→∞

[
ρ(xN , T,N)

√
1

2πε2∆t
dxN

]

ρ(xN , T,N) =

N−1∏
n=1

[√
1

2π∆tε2

∫
R
dxn

]
e
− 1

2ε2

∑N
n=1

(
xn−xn−1

∆t
−f(xn−1)

)2
∆t
.

We shall see that we can sometimes get away with performing a simpler calculation but
at the cost losing the normalization factor. This formulation for the distribution at the
endtime can be directly compared to the usual Fokker-Planck evolution for the density,

∂tρ = −∂x(fρ) +
ε2

2
∂xxρ.

The Fokker-Panck equation states that the evolution of the density is one that is advected
by the determistic equations of motion and diffused due to the noise, whereas the path
integral states that the distribution at the endtime comes from an exploration of all possible
paths weighted most heavily be the deterministic trajectories. These are two different but
complementary interpretations for the evolution of the density.

We will never make use of the limit definition in order to calculate the endtime density,
but it is illuminating to see what such a calculation would entail. If one attempts to calculate
the density at the endtime using the limit definition of the path integral formulation, the
following integral for the first time-step arises∫ ∞

−∞
exp

[
− 1

2ε2

(
x1 − x0

∆t
− f(x0)

)2

− 1

2ε2

(
x2 − x1

∆t
− f(x1)

)2
]
dx1.

The role of f manifests itself in this case. Although we are interested in the ∆t→ 0 limit,
nonlinearity in f may dominate the integral, changing the Gaussian statistics. Depending



on the system of interest this may or may not be an impediment to progress for analytic
calculations. This is an explicit manifestation of how a path is dependent on its history.
Thus we are led to different ways of calculating or estimating the integral.

2.2 Large deviation theory

Traditional large deviation theory concerns itself with the probability that sums of inde-
pendent identically distributed random variables deviate from the mean by a large value.
Namely, let X1, ..., XN be independent identically distributed random variables and let SN
denote their sum. If the moment generating function M(t) = EetX is finite within some
neighborhood of t = 0 and 0 < var(X), then for a > EX

1

N
logP(SN > Na)→ −I(a) as N →∞

where I(a) = sups [sa− log(M(t))]. The I(a) object is called the rate function.The log of
the moment generating function is called the cumulant generating function.

In stochastic differential equations our random variables are no longer independent since
they satisfy a Markov property; however, it is still possible that a large deviation principle
may be satisfied. We say that a density satisfies a large deviation principle if

ρ(a) ∼ exp

(
− 1

ε2
I(a)

)
for some rate function I(a) in the limit ε→ 0. Similar to what happens in the independent
identically distributed case the cumulant generating function may be related to the rate
function. In the ε→ 0 limit the calculation goes as follows

ε2 log
〈
e
λ
ε2
X(T )

〉
∼ ε2 log

[∫ ∞
−∞

da exp

(
λ

ε2
a+ ln ρ(a)

)]
= ε2 log

[∫ ∞
−∞

da exp

(
λ

ε2
a− 1

ε2
I(a)

)]
≈ ε2 log

(
D exp

[
1

ε2

(
sup
a

[λa− I(a)]

)])
= ε2 log(D) + sup

a
[λa− I(a)]

≈ sup
a

[λa− I(a)]

where in the first approximation we used Laplace’s method to estimate the integral and
picked up an extra constant D, and in the second approximation we assumed that ε2 log(D)
goes to zero in the limit. As is usual in the case of asymptotics we expect the formula
to be very good for small but finite ε, even though we formally did the calculation for
the limit. Succinctly we may say that the log of the moment generating function is the
Fenchel-Legendre Transform of the rate function.



On the other hand we can repeat the same calculation with the path integral formulation.
In this case we have that

ε2 log
〈
e
λ
ε2
x(T )

〉
= ε2 log

[∫
D[x(t)] exp

(
1

ε2
[λx(T )−A[x]]

)]
≈ ε2 log

[
D1 exp

(
1

ε2
sup
x(t)

[λx(T )−A[x]]

)]
≈ sup

x(t)
[λx(T )−A[x]]

whereA[x] = 1
2

∫ T
0 (ẋ− f(x))2 dt, the first approximation came from using Laplace’s method

on the functional, D1 is the constant that comes from our cavalier use of path integrals and
Laplace’s method, and the last approximation comes from assuming that ε2 log (D1) → 0
as ε→ 0.

Assuming that all the approximations are valid, we may put our two calculations to-
gether to arrive at the following relation

sup
a

[λa− I(a)] = sup
x(t)

[λx(T )−A[x]]

when ε→ 0. Again we do not expect exact equality for non-zero epsilon but we do expect
this expression to be approximately valid.

We now further make the claim that the rate function I is directly related to the action.
Justifying that it is the case follows under the assumptions of Friedlen-Wentzell theory, but
here we will give a heuristic argument. Suppose that both sides admit a unique minimizer
for some number a∗ and some path x∗, then we have that

λ(x∗(T )− a∗) + I(a∗) = A[x∗].

Furthermore, if x∗(T ) = a∗, then

I(a∗) = A[x∗].

It may be possible for this to occur if A[x∗] is convex and the rate function I(a) is convex
in which case the Fenchel-Legendre Transforms are invertible. From whence we see that it
must be the case that I(a∗) = A[x∗], that is, x∗(T ) = a∗. If neither are convex then the
most we can say is that their convex envelopes are equivalent to one another.

Although here we focused on the distribution at the endtime x(T ) we may choose any
other observable and follow the same procedure to get a relation between an observable
and the minimizer of an action. For example we could choose x(T )2 or the average value

of the trajectory T−1
∫ T

0 x(t)dt in the time interval as our observable. Regardless of the
exact choice, the rate function would be related to the minimizer of a functional subject to
a constraint.

2.3 Instantons

In the previous section we saw that the minimizers of the Friedlen-Wentzell action play a
direct role in determining the probability distribution function of a random variable under



a large deviation assumption. We call the minimizer of this action the instanton. It has the
interpretation of being the “most likely path” of a stochastic trajectory conditioned on the
starting and ending value.

Although a given realization of a stochastic process bears no resemblance to the instan-
ton, it is still the most likely path in the following sense: If one generates a large ensemble
of stochastic trajectories and filters out all the ones that reach within an epsilon window of
the target value of an observable (for example all trajectories such that x(T ) ∈ [a− ε, a+ ε]
for some number a and positive number epsilon), then the instanton trajectory corresponds
to the locations in space (for each time) in which the most number of trajectories pass
through. Said differently, we divide up space and time into a bunch of little squares and
we tally the number of times a square has a trajectory that passes through it. The squares
with the most number of tallies is the instanton trajectory, the most likely path.

However we do not (in this document) use this stochastic formulation to calculate in-
stantons, rather, we concentrate purely on finding the infimum of the Friedlen-Wentzell
action. To find the infimum of the functional we employ calculus of variations machinery.
Although setting a derivative equal to zero only yields a local minimizer, it is often the
only way we can make progress in obtaining potential global minimizers. We will impose
constraints into the minimization procedure, things like demanding that the final value of
our trajectory attains a certain value or perhaps the average value. Both the Lagrangian
and Hamiltonian formulations have their uses and in this document we will employ both.

We will now concentrate our efforts on determining trajectories that minimize the action

A[x] =
1

2

∫ T

0
‖ẋ− f(x)‖2 dt

subject to x(0) = a and x(T ) = b, where x : R → Rn, f : Rn → Rn, and ‖ · ‖ is the usual
Euclidean norm. This is the multidimensional form of the action in the path integral that
was derived in the last section. It is straightforward albeit somewhat tedious to arrive at
this expression from first principles.

As per usual we try to minimize our actions by calculating derivatives and setting it
equal to zero. Variations of the action A with respect to the path x yield

δA

δx
= − d

dt
(ẋ− f(x))− [∇f ]T (ẋ− f(x))

= −ẍ+
(
∇f − [∇f ]T

)
ẋ+ [∇f ]T f(x).

Upon setting the variation equal to zero we derive the Lagrangian form of the equations

ẍ =
(
∇f − [∇f ]T

)
ẋ+ [∇f ]T f(x).

A solution to this set of equations with the given boundary conditions is our instanton. We
have not yet mentioned how to solve such an equation, but this will come shortly.

We may also solve the Hamiltonian form of the equations of motion

ẋ = f + p

ṗ = −[∇f ]T p.



These will be what we will refer to as the instanton equations. The conjugate momenta p
can be thought of as the necessary stochastic forcing to drive the state variables away from
deterministic trajectories. Note that p = 0 corresponds to the deterministic trajectory.

The Hamiltonian form of the equations can be thought of as directly coming from the
action

B[x, p] =

∫ T

0
〈p, ẋ− f(x)〉 − 1

2
‖p‖2.

Going from the A action to the B action is called the Hubbard-Stratonovich transformation.
This can be derived directly from the path integral representation. The one dimensional
equivalent of this transformation is the identity

1√
2π

∫ ∞
−∞

e−
1
2
y2
dy =

1

2π

∫ ∞
−∞

dy

∫ ∞
−∞

dxe−
1
2
x2+ixy.

If we want to build in constraints we can introduce Lagrange multipliers to again reduce
the problem to one of unconstrained optimization. For example, suppose that we would like
to enforce the endpoint condition that x(T ) = b. Although we typically set up the calculus
of variations problem with this kind of constraint built in, we can also think of it in terms
of finding the critical points of the augmented actions

A[λ, x] = −〈λ, x(T )− b〉+A[x]

B[λ, x, p] = −〈λ, x(T )− b〉+B[x, p]

For our purposes here we will concentrate on the latter action. If one performs the usual
calculation1 on this object one sees that the conjugate momenta come equipped with an
endpoint condition of the from p(T ) = −λ. This may be derived several ways. One way
is to consider variations of x and p that don’t vanish at the endpoints in which case, for
integration by parts to hold, it must be that p(T ) = −λ. The conjugate momenta equations
(as we shall see) are naturally evolved backwards, thus letting us avoid the awkwardness
associated with solving boundary value problem via a shooting method or higher order
method such as Newton-Kantorovich iteration.

Suppose that we, instead would like to consider a constraint on the average value of our
state. Then the augmented actions look like

A[λ, x] = −λ
(

1

T

∫ T

0
x(t)dt− b

)
+A[x]

B[λ, x, p] = −λ
(

1

T

∫ T

0
x(t)dt− b

)
+B[x, p].

From whence the Hamiltonian form of the instanton equations get modified to

ẋ = f + p

ṗ = −[∇f ]T p− λ

T
.

1Calculating the derivative by considering variations of trajectories and using integration by parts when
necessary.



Hence we see that constraints on the state variables manifest themselves as conditions on
the conjugate momenta. Here p(T ) = 0 at the endtime is the natural boundary condition.
This natural boundary condition can be derived in two ways. The first is by requiring
integration by parts to hold and treating the endpoint variations as nonvanishing. The
other derivation assumes that the endpoint variations vanish and then maximizes over all
endpoint conditions for p. In the case that we are enforcing a bulk integral constraint we
add an inhomogenous term to the p equation and in the case of an endpoint condition we
gain endpoint conditions for p.

In the sections that follow we will show how to use the instanton equations to solve for
the probability densities of observables. Finally, we comment that is not necessarily the
case that the instanton equations offer a unique solution. With multiple solutions to choose
from we must pick out the one that minimizes the action as corresponding to the “true”
instanton.

2.4 Example 1: Brownian motion

We will now put together all the theory and perform a few calculations. The simplest one
is finding the probability distribution of Brownian motion in one dimension. Specifically
the system that we will be looking at is

ẋ = εξ

where ξ is delta correlated Gaussian white noise and ε 6= 0 is our “noise strength”. Our
observable of interest will be x(T ), the distribution of x at the final time T .

We can readily obtain this distribution by solving The Fokker-Planck equation

∂tρ = −ε
2

2
∂xxρ.

We will assume that the trajectory starts at x(0) = 0, meaning that the initial density is
ρ(b, 0) = δ(b). Given this initial condition the probability distribution for a later time T is
calculated to be

ρ(b, T ) =
1√

2πε2
e−

1
2ε2

b2

T .

We will now arrive at the same probability distribution via the instanton approach.
First note that the probability distribution for the position at the final time satisfies a large
deviation principle. Furthermore, Laplace’s method is exact for Gaussian distributions,
hence we expect the instanton approach to yield very good answers.

Given that our observable is the trajectory at the final time x(T ) = b the Hamiltonian
form of the instanton equations are

ẋ = p

ṗ = 0



with x(0) = 0, p(T ) = −λ, and x(T ) = b, which can be readily solved to yield

x∗(t) = −λt
p∗(t) = −λ

λ = − b
T
.

To solve this system of equations we do not necessarily need to specify where the trajectory
ends up beforehand (the x(T ) = b condition). Indeed if we specified λ at the outset, this
would have implicitly defined an endpoint x(T ). The Lagrange multiplier λ implicitly en-
forces this constraint. In nonlinear systems a choice of λ will often not lead to a unique final
value for x(T ), but for nondegenerate linear systems we expect uniqueness. Furthermore,
we expect that for a given final value there always exists a λ such that x(T ) = b for an
arbitrary b. Heuristically, this comes from the fact that we can imagine noise driving our
system to any point in phase space. This is not true if there are regions where the noise is
zero.

The solution x∗(t) = b
T t is the instanton for the Brownian motion system and it also

happens to be the global minimizer of the action. It says that the most likely path of an
observable that starts at x(0) = 0 and reaches x(T ) = b is a straight line. Again, this does
not mean that a Langevin trajectory will look like this, but rather that an ensemble of
paths pass through this straight line with more likelihood than other points in spacetime.
Now that we have our instanton we can calculate the probability distribution via the large
deviation assumption

ρ(b, T ) ∼ exp

(
− 1

2ε2
A[x∗]

)
= exp

(
− b2

2ε2T

)
which is proportional to the exact probability distribution obtained from the Fokker-Planck
equation. The reason that the normalization factor is lost is a consequence of the path
integral formulation and Laplace’s method. Recapitulating, we have solved a continuum of
ODE’s to arrive at the same density as the solution to the Fokker-Planck PDE.

We chose our observable to be the state of the system at the final time, but there is no
reason why we cannot consider different objects, for example the average value of the path
1
T

∫ T
0 x(t)dt, or even the square of the state at the final time 1

2x(T )2. The former presents
no difficulties, but the latter brings up some interesting issues. There the final condition
of p is p(T ) = −λx(T ) and when one solves the equations one see that λ = −T−1, it is
independent of b. Furthermore the instanton is exactly the same as was the case for the
observable at the final value case. First of all this cannot be correct because x(T )2 cannot
take negative values, thus these equations can break down and it pays to be wary of their
limit.

2.5 Example 2: Ornstein-Uhlenbeck process

A slightly more complicated example of using the instanton equations to obtain the proba-
bility distribution comes from examining Ornstein-Uhlenbeck processes. We will repeat the



same calculation as the previous section for this system. The stochastic ode is of the form

ẋ = −γx+ εξ

where ξ is again taken to be Gaussian delta correlated white noise and γ > 0. The Fokker-
Planck equation in this case is

∂tρ = −γ∂x (xρ) +
ε2

2
∂xxρ

whose solution for ρ(b, 0) = δ(b− a) is

ρ(b, t) =

√
γ

πε2 (1− e−2γt)
exp

(
− γ
ε2

[(
b− ae−γt

)2
1− e−2γt

])
.

Again a large deviation principle is satisfied, and the solution is a Gaussian, hence we expect
that the instanton equation will yield the exact answer in this case. Choosing our observable
to x(T ) we get the instanton equations

ẋ = −γx+ p

ṗ = γp

with x(0) = a, p(T ) = −λ, and x(T ) = b. The solution to these equations are

x(t) = ae−γt − e−γT λ

2γ

(
eγt − e−γt

)
p(t) = −λeγ(t−T )

b = ae−γT − λ

2γ

(
1− e−2γT

)
Plugging the instanton into to the action yields

ρ(b, T ) ∼ exp

(
− 1

2ε2
A[x]

)
= exp

(
− 1

2ε2

∫ T

0
p(t)2dt

)
= exp

(
− γ
ε2

[(
b− ae−γt

)2
1− e−2γT

])
.

Again we see that we get the same result as before, but without the normalization factor.

2.6 Numerically solving the instanton equations

Although there are more cases that can be handled analytically for more complicated sys-
tems we must fall back on computing the solutions numerically. To do so we find the
Hamiltonian formulation the easiest “deterministic” way to compute the instantons. In the



multidimensional setting the equations of motion for the distribution of a state variable at
the endtime is

ẋ = f(x) + p

ṗ = −[∇f ]T p

with boundary conditions x(0) = a, p(T ) = λ, x(T ) = b. If our interest is in, let’s say, just
the i′th component of the vector xi, then λj = 0 for j 6= i. This is equivalent to computing
the probability distribution of xi with all the other variables integrated out. The adjoint
operator −[∇f ]T may be calculated by hand.

The algorithm to solve the instanton equations goes as follows:

1. Given the conjugate momenta p(n), evolve the state equation equation forward in time
using the initial condition x(0) = a to generate a new state x̃(n).

2. Evolve the adjoint equation backwards using p(T ) = −λ and x̃(n) to generate a new
momenta p̃(n).

3. Update x and p via

x(n+1) = (1− s)x(n) + sx̃(n)

p(n+1) = (1− s)p(n) + sp̃(n)

for some s ∈ (0, 1]. This is the relaxation step.

4. Repeat until both x and p stop changing.

To initialize the procedure one may take p(0) = 0 for small λ. Once small λ solutions
are calculated one may proceed to the large λ case by numerically continuing, using the
p solution from the smaller λ as an initial guess for the higher λ. The case s = 1 in
the algorithm corresponds to a fixed point iteration and s ∈ (0, 1) may be though of as
a relaxation type procedure. One may attempt to choose s such that the residual of the
equations are lower at each iteration. There is no guarantee that the algorithm will converge,
but it has been seen to work for a lot of cases considered for this work. It has however, also
failed. Numerically this would correspond to the new search direction given by x(n) − x̃(n)

as being inadequate, leading to s→ 0 as n gets larger.
To evolve the equations forward in time is a problem of numerical integration, of which

there are a large variety of choices; however, one must be careful in choosing a method.
Since both the instanton and the momenta must be known at each point in time to solve
the equations of motion, using a Runge-Kutta scheme necessitates the use of interpolation
to get intermediate values. This added complexity is why we opted for the simpler multi-
step schemes. Heun’s method, followed by third order Adam’s Bashforth is a perfectly
adequate globally third order scheme. Furthermore one must be careful in starting the time
integration scheme. There is no point in using a higher order scheme if the first few time
steps don’t have the same local order as the global order. Hence why we start off with two
steps of Heun’s method and then use Third Order Adam’s Bashforth on the rest.

But how does one verify that one indeed has the solution to the instanton equations?
Doing one fixed point iteration and checking that the answer has not changed is one method.



A method that corresponds to checking how close our discrete numerical solution is to the
continuum is to check to see that the Hamiltonian is conserved at each point in time. This
is a completely separate check than the one to verify that the discrete equation are satisfied.
Although the continuous system has a Hamiltonian that is conserved at each point in time,
the discrete system need not conserve the discrete Hamiltonian. Generally the Hamiltonian
will not be conserved, but will have slight variations in it that get smaller as one decreases
the time-step. It is very important to check to see that the answer does not change as ∆t
gets smaller.

For systems with a large number of state variables memory requirements start to be
a rate limiting factor. Depending on the choice of noise one can reduce the requirements
by only storing a few states of p and setting the rest to zero. Thus the only thing that
needs to be stored is the state at the beginning time, and the value of p at all times. This
is the algorithm that has been developed by Grafke et al. [3]. However, there is a third
option that eliminates the need of storing x and p at all points in time. Here one uses
both the Lagrangian and Hamiltonian formulation. In this document this method was not
implemented, but was developed just in case it was necessary. The checkpointing method
cannot be used on the Hamiltonian form of the instanton equations, but using both the
Hamiltonian and the Lagrangian formulation, one may employ the checkpoint method from
optimal control theory.

There are other algorithms that could be used as well: for example second order methods
(Newton-Kantorovich iteration), a spectral discretization, Heun’s method, etc. This is in
addition to the direct method, which is done by running the stochastic system directly. We
opted for the simplest (and most standard) method to solve the equations. Although we
did run into difficulty with this simple method, we do not think that this is a consequence
of the method, as will be explained later.

3 Instantons in Chaotic Systems

All the examples that we have talked about so far have been for linear systems that satisfy a
large deviation principle. We would now like to carry this program into the nonlinear regime.
We have seen that instantons can tell us about deviations from deterministic dynamics, but
can it tell us anything about a chaotic attractor itself? The initial motivation for this project
was a paper by Grafke et al. in which they calculated the probability distribution for the
velocity gradient in Burger’s turbulence [4]. In that work the initial condition was taken
to be the origin and the final time T was taken to be infinity. At the end they were able
to show excellent agreement with the calculated probability distribution via the instanton
approach and the one obtained from Monte Carlo simulations of the stochastic system. The
authors then conjectured that the instanton approach should be a viable approach towards
the study of the Navier-Stokes equation.

One of the important things to note is that the deterministic dynamics of Burger’s
equation has no chaos. What is known as Burger’s Turbulence is the stochastically forced
Burger’s equation. Furthermore Burger’s equation is integrable via the Cole-Hopf transfor-
mation in which it can be related to the heat equation. This by no means says that the
stochastically forced Burger’s equation is similar to the stochastically forced heat equation,
but rather says that the underlying deterministic dynamics are non-chaotic.



This observation prompts one to look at the use of instantons in chaotic systems, in
hopes of calculating similar objects. In Navier-Stokes the dream would be to calculate
the probability distribution of the dissipation ‖∇~u‖2 on the chaotic attractor or perhaps
of a component of the velocity field ~u at a choice point in space. There is an important
caveat here. The probability distribution is constructed from a histogram of the signal
d(t) = ‖∇~u‖2 in the long time limit. This is a deterministic object, completely independent
of noise but hopefully related to the noiseless limit of a stochastic forced Navier-Stokes
system. Hence again we want to understand objects in the noiseless limit, exactly where
the large deviation theory and instanton approach shines the most.

Just because we would like to understand objects in the noiseless limit does not mean
that the instanton is a viable method to understand the invariant measure. The main issue
here is that the invariant measure comes from a long time limit. It is not necessarily the case
that the εrightarrow0 and T →∞ limits commute. This is relevant because the instanton
equations make use of the ε→ 0 limit first.

On the other hand adding noise to the system allows one to explore the entirety of state
space in a finite amount of time via sufficiently large noises. Since deviations away from
deterministic dynamics cost more noise it may be the case that one can explore the invariant
measure. Said differently perhaps the noise makes it easier to access regions of state space
corresponding to the invariant set while penalizing deviations away from the invariant set.
We would want the end result to be independent of what starting point we chose on the
attractor and ideally we would like like to take a long time limit. Unfortunately as we will
see and explain (later), both will be impossible on a chaotic attractor.

However, there is another feature of instantons that make it an interesting tool to use on
chaotic systems: its ability to find “most likely” paths from one point to another. Although
typically this is done in the context of transitions from one stable point to another in systems
that admit a potential function for the forcing term, it may be possible for the instanton
to find “minimal paths” from one exceptional state of the system to another: for example
transitions from one unstable fixed point to another. If this is applicable in simple chaotic
systems it may be the case that new fixed points (coherent structures) may be discovered
in Navier-Stokes equation using the instanton approach.

3.1 Lorenz

The first chaotic system that we will look at are the celebrated Lorenz equations,

ẋ = σ(−x+ y)

ẏ = −y + (r − z)x
ż = −bz + xy,

where σ ∈ (0,∞), r ∈ (0,∞) and b ∈ (0, 4) [6]. The canonical parameter values for the
chaotic regime are (σ, r, b) =

(
10, 28, 8

3

)
. These equations are a prototypical model of

continuous time dynamical systems that exhibit chaos. They were originally derived as a
truncation of Rayleigh’s problem, which is itself a model of thermal convection [5].

Figure 1 shows the trajectory in phase space for a typical initial condition on the at-
tractor. Here one can see the delicate spirals and and low dimensionality of the attracting



Figure 1: The phase plot of the Lorenz attractor at r = 28, σ = 10, and b = 8/3. The
colors indicate the relative speed of a particle on the trajectory, where red is “fast” and
blue is “slow”.

set2. The holes in the wings are where the fixed points of the systems are located and the
colors represent the relative speed on the attractor where red is fast and blue is slow.

There are several reasons why the Lorenz equations are an attractive testing ground
for the instanton approach. One is that the deterministic dynamics remain bounded for all
time. Secondly the Lorenz equations exhibit chaos, and this is exactly the regime in which
we would like to test some of the instanton ideas. Third there are well defined quantities of
interest that we would like to understand. The observable that we will concentrate on here
is the long time average of the state variables, for example

〈xy〉 = lim sup
T→∞

1

T

∫ T

0
xydt

= b〈z〉

where the last line come from integrating the z equation for a long time, making use of the
fact that the system is bounded for all time. The long time correlation of the x and y state
variables are related to “heat transport” (the Nusselt number) in Rayleigh’s original model.

2Using periodic orbit theory Viswanath estimated the Hausdorff dimension of the set to be approximately
2.06 [8]



Figure 2: Histogram of Lorenz state variable z on the chaotic attractor for parameter
values r = 28, σ = 10, and b = 8/3.

This quantity has gained some recent attention where one can prove upper bounds in both
the deterministic case and as well as the noisy case [7] [1].

In figure 2 the histogram of z(t) on the chaotic attractor is shown. The average value
of z for parameter values (r, σ, b) appears to be about z(t) ≈ 23.5 ± 0.1. One can see that
this distribution has compact support (as it must be since z is bounded on the attractor),
is highly non-Gaussian, and is strictly positive. If one refines the partition of bins it seems
that the distribution becomes more and more complex, leading to the conjecture that it is
probably fractal.

One expects that this distribution is related to the Lorenz system with a small amount
of noise in the steady state limit. For any amount of noise (however small), we also expect
that the distribution of z becomes infinitely smooth and extends to ±∞ (in contrast to
our compact support for the noiseless case). This conjecture is supported by numerical
evidence by B. Marston et al. in an unpublished (as of October 2015) work. In that study
the steady state Fokker-Planck equation for the Lorenz system was solved numerically and
then directly compared to the long time statistics, albeit for different parameter values than
the canonical ones. Very good agreement was found for a range of “small” noise strength
values.

One of our goals with the instanton formulation is to check whether or not it is possible
to replicate some features of the histogram in 2. For example we would like to test whether
or not the instanton equations are able to pick out the mean value, higher order statistics
such as the variance, or in what way the compact support of the distribution manifests



itself. We know that the instanton equations keep track of a single trajectory and tells
us deviations away from the determinism whereas the statistics of a chaotic trajectory
only manifest themselves in the infinite time limit. Solving the instanton equations in the
infinite time limit for a point that starts off on the chaotic attractor is not feasible, but
it is possible to solve a finite time computation. Thus we will check these questions for
finite time intervals. Since noise allows one to explore all of phase space in a finite amount
of time3 and typically don’t have distributions with compact support, one may wonder if
adding noise accelerates convergence to steady state distribution. Said differently perhaps
noise lets one peek farther into the future than the deterministic equations.

To this end we will obtain the instanton equations

ẋ = x+ p

ṗ = −[∇f ]T p

for the stochastic Lorenz system with isotropic Gaussian white noise

ẋ = σ(−x+ y) + εξ1

ẏ = −y + (r − z)x+ εξ2

ż = −bz + xy + εξ3.

To get the instanton equations we must first calculate ∇f , which is

∇f =

 −σ σ 0
r − z −1 −x
y x −b


⇒

−[∇f ]T =

 σ −(r − z) −y
−σ 1 −x
0 x b

 .
From this we obtain the following set of coupled nonlinear differential equations,

ẋ = σ(−x+ y) + px

ẏ = −y + (r − z)x+ py

ż = −bz + xy + pz

ṗx = σpx − py(r − z)− pzy
ṗy = py − σpx − pzx
ṗz = bpz + pyx.

As was stated previously the px(t) = py(t) = pz(t) = 0 at each time t case corresponds to
the deterministic evolution. The end condition here is naturally px(T ) = py(T ) = pz(T ) = 0.
There is one nontrivial stochastic solution4 that we can determine exactly from these set

3This is a consequence of distributions coming from stochastic ode’s with Gaussian white noise.
4We can also calculate the fixed points of the deterministic system, but this is not a solution that has

nonzero values for the conjugate momenta.



of equations which corresponds to the initial condition x(0) = y(0) = px(T ) = py(T ) = 0
and z(0) = a and pz(T ) = b. These final conditions correspond to choosing z(t) as the
observable of interest. The solution is an Ornstein-Uhlenbeck process along the z-axis with
z = 0 being the “stable point”. Experience tells us that this cannot be the solution that we
are looking for though. Since we added isotropic Gaussian white noise we expect probability
to leak from the sides and get wrapped up in the attractor for any finite amount of time.

This brings us to our first departure from the examples that were considered earlier:
we expect multiple solutions to the instanton equations. Given that we are dealing with
nonlinear equations this is perhaps not unexpected, but it is surprising since there is no
mention of it in the literature. An example of this phenomena is summarized by the phase
space plot in 3. Here the initial condition was taken to be the origin and the final condition5

for the conjugate momenta was taken to be px(T ) = py(T ) = 0 and pz(T ) = λ. The figure
displays three solutions corresponding to the same final condition for z. The red straight
line is the Ornstein-Uhlenbeck process solution, while the blue and green curves are two
alternative solutions that achieve the same final value of z. The dots in the figure represent
the fixed points of the Lorenz attractor.

One can see from the figure that the blue and green solutions seem to be converging
to the unstable fixed points of the attractor. Both of the solutions taken together wrap
around the outside of the attractor and appear to be related to the heteroclinic connections
between the origin and the fixed points. The oscillatory nature of the convergence to the
fixed point made taking the long time limit numerically intractable. Furthermore solutions
for larger as well as smaller values of |λ| were found to be very difficult to compute given the
procedure outlined in section 2.6, thus the rate function corresponding to these solutions
were not computed. However, given that the infinite time limit seems to be evolving towards
the fixed point one would not expect the corresponding probability distribution to resemble
that of Figure 2.

To calculate the different numerical solutions one had to generate different initial guesses
for the starting conjugate momenta px, py, pz. For the Ornstein-Uhlenbeck process it was
sufficient to choose px(t) = py(t) = pz(t) = 0 as the initial guess and use the procedure
described in Section 2.6. For the other two solutions we used a numerical continuation
procedure. First the problem with the final condition px(T ) = py(T ) = δ and pz(T ) = λ
was solved for a small δ (again using the zero solution for p as an initial guess) and then
this solution was fed into the algorithm as the starting guess for the solution to the px(T ) =
py(T ) = 0 and pz(T ) = λ boundary conditions. Attempts were made to find more solutions,
but none were found.

So far we have only talked about an initial condition that starts on the origin, which
also happens to be a fixed point for the Lorenz system. We also looked at other initial
values, for example

1. random points on the chaotic attractor,

5Since in the figure we chose a fixed final z(t) this means that λ was different depending on which solution
was being computed, the green and the blue curves had the same λ ≈ 10−5 while the red line had a much
higher λ chosen so that the final value of z was the same. We could have chosen the same boundary condition
λ ≈ 10−5 for the red curve but this would not appear on the graph since it would be absorbed in the red
dot.



Figure 3: Multiple solutions for Lorenz system instanton trajectories with an initial condi-
tion starting at the origin. The blue and green curves appear to be related to heteroclinic
connection from the origin (the red dot) to the two fixed points (blue and green dots). The
red line is the Ornstein-Uhlenbeck solution to the Lorenz instanton equations corresponding
to the same final value of z as the green and blue curves.



Figure 4: Cost versus final value of z for an initial condition on the attractor and time
T = 1.5. The observable is taken to be z at the final time.

2. initial condition leading to a periodic orbit,

3. and other fixed points.

for different time periods. In all cases it was found that calculating trajectories for long time
periods was not possible due to extreme ill-conditioning. However, modest values for time
T ≈ 5 were possible to compute, but finding the global minimum tended to be a challenge.

A representative result is summarized by figure 4. This shows the value of the action
for an initial point on the attractor with a time T = 1.5. Here the observable was the
final value of z. The minimum of the action is 0, which corresponds to the deterministic
trajectory. Each dot is a different instanton solution. The solutions were obtained by
starting with the deterministic trajectory λ = 0 and numerically continuing to higher λ.
Attempts were made to go further but a few numerical issues prevented this. One can see
that the quadratic behavior of the left and the right are different. Numerically continuing
to smaller values of z(T ) were not a problem but when attempting to continue to higher
values one starting finding different branches of solutions corresponding to the same final
value for the conjugate momenta.

Similar computations were performed for a variety of different initial points, time peri-
ods, and observables, but all of them had the same parabolic structure. This means that
all probability densities that were computed were essentially similar to Gaussian distribu-
tions and had a dependence on ε. This is in stark contrast to Figure 2 where there is no ε
dependence. However it was observed that larger times required smaller values of cost to
reach a larger final value of z. Hence it is suspected in the infinite time limit the cost for
reaching any point of the attractor goes to zero.

Furthermore no hint to the compact support of the distribution was found, that is to
say, the probability density computed from instanton solutions did not decay faster for



trajectories outside of the attractor. In light of these results it does not seem that we can
interpret the instanton calculations as telling us more than the probability of deviating
away from determinism. However, the calculation represented in Figure 3 gives hope of the
instanton formulation being used to calculate both heteroclinic connections and perhaps
being used to find unsteady fixed points.

3.2 Kuramoto-Sivashinsky

The second chaotic system that we will examine in this document is the Kuramoto-Sivashinksy
equations KS equations)

∂tu+ ∂xxxxu+ ∂xxu+ u∂xu = 0

which is periodic x ∈ [0,Γ]. This system is a hallmark of spatio-temporal chaos, and its
dynamics are essentially confined to a finite dimensional dynamical system, even though it
is ostensibly an infinite dimensional system. The ∂xxxx term introduces dissipation into the
system while the ∂xx injects energy and in the long time limit these terms balance. The
advective term transfers energy from the injective scale to the dissipative scale, guaranteeing
that the solutions remain bounded. In this system the aspect ratio Γ serves as a measure
of the possible complexity of the flow, where larger Γ implies more complexity.

The interpretation of the fourth and second derivative terms is most easily seen by
multiplying the KS equations by u, integrating over space, and making use of periodicity
to arrive at

1

2
∂t

∫ Γ

0
u2dx =

∫ Γ

0
(∂xu)2 dx−

∫ Γ

0
(∂xxu)2 dx.

In the long time limit, since u is bounded, we have a balance between the average rate of
injection and average rate of dissipation

lim sup
T→∞

1

T

∫ T

0

∫ Γ

0
(∂xxu)2 dxdt = lim sup

T→∞

1

T

∫ T

0

∫ Γ

0
(∂xu)2 dxdt.

The advective term interpretation may be seen by taking the spatial Fourier transform of
the equations to get

∂tûn + (k4
n − k2

n)ûn + û∂xun = 0,

where kn = n2π
Γ . The advective term is a convolution in Fourier space, meaning that each

Fourier mode is intimately coupled to one another. Furthermore in this formulation it is
much easier to see why Γ is a measure of the complexity. If one looks at the k4

n − k2
n term

one can see that larger Γ allows more modes to be excited by the k2
n term.

We will be applying the instanton formalism to the KS equations and look at many of
the same things that were done for the Lorenz equations. Before embarking on this journey
we will take a brief moment to discuss what it means to add noise to a PDE and what
kind of information we would like to extract. In the ODE case when we add noise to the
system we wanted to understand the probability distribution of the state at each point in
time. To this end a Fokker-Plank equation or Path Integral was employed to calculate such



a quantity. Since PDE’s can be thought of as infinite dimensional ODE’s it seems that the
Fokker-Plank approach is out of the question since it would be a PDE with infinitely many
“spatial” derivatives. This does not mean that the problem is completely intractable. If we
add noise to a PDE we can still ask questions such as “What is the probability distribution
of u at the origin?” or “What is the probability distribution of the first Fourier mode u1?”.
In contrast to the ODE case in PDEs one must be very careful how noise is added to the
system.

This is perhaps easiest to understand if we look at the KS equations in the Fourier mode
representation. We cannot add uniform Gaussian white noise to each Fourier mode. The
heuristic reasoning for this is that all scales will be excited by uniform Gaussian white noise,
thus the connection with the deterministic equation is lost. The“energy” in some sense will
be infinite. The typical way around this is to consider spatially correlated noise and leave
it white in time. In Fourier space the equations of motion for the noisy KS equations could
be chosen to be as follows

∂tûn + (k4
n − k2

n)ûn + û∂xun = εwnξn

wn = kne
− 1

2
k2
n

where ξn is white noise in time. The wn term is chosen so that the mean frequency is
not excited and the decay term is chosen so that the smallest amplitudes are not “overly
excited” by the noise.

We may go through the same path integral discretization procedure as before to arrive
at the Friedlen-Wentzell action

A[u] =
∑
n

[
(wn)−2

∫ T

0

(
∂tûn + (k4

n − k2
n)ûk + û∂xun

)2
dt

]
=

∫ T

0
dt ‖∂tu+ ∂xxxxu+ ∂xxu+ u∂xu‖χ

where the ‖·‖χ norm is the norm associated with the first line and χ denotes the spatial cor-
relation. Note that the higher Fourier modes have a much higher stochastic cost associated
with them. The n = 0 mode will be taken to be zero throughout this work.

The instanton equations for Kuramoto-Sivashinsky are

∂tu+ ∂xxxxu+ ∂xxu+ u∂xu = χ ∗ p
−∂tp+ ∂xxxxp+ ∂xxp− u∂xp = 0

where χ ∗ p is a convolution of the conjugate momenta p with the spatial correlation χ. We
may formally obtain it by simply observing that the operator that governs the backwards
evolution for p will always be the adjoint operator and that the stochastic forcing term is
modified by the correlation function. If we wish to consider averaged quantities, i.e. the
average let’s say, energy of the system

1

LT

∫ T

0

∫ L

0
u2dxdt



the the instanton equations get modified as before with an inhomogenous term for the
conjugate momenta p. In Fourier space the instanton equations are

∂tûn + (k4
n − k2

n)ûn + û∂xun = (wn)2pn

−∂tp̂n + (k4
n − k2

n)p̂n − û∂xpn = 0

Here the aspect ratio Γ is taken to be 22. At this aspect ratio it suffices to have N = 128
modes to represent the flow in the chaotic regime.

Many of the difficulties and insights from the Lorenz system carried over to the KS
equations. Again it was found that taking the long time limit was intractable and lead to
problems with convergence. Furthermore it seems that they can only tell us about deviations
away from determinism. A sample result is displayed in Figure 5. Here the KS instanton
equations6 were taken from two initial conditions: the one on the left was from the initial
condition u = 0 while the one on the right is a random initial point on the attractor. The
horizontal axis is space, the vertical axis is time, and the colors represent whether or not the
flow field is positive or negative. The final state of the evolution from zero is distinct from
the evolution on the chaotic attractor and has a much simpler evolution. This calculation
shows that the initial condition plays a huge role in the evolution.

A hypothesis that has not been tested yet is to check whether or not the instanton
equations may be used to easily calculate unstable fixed points of the system. If this
is possible the instanton equations offer an exciting alternative to the usual methods for
calculating fixed points for PDEs that allow for convergence from much farther away than
usual since it is related to a gradient ascent type of procedure. This will be tested in future
work.

3.3 Generic insights and speculation

Many of the numerical difficulties are perhaps insurmountable in this project. The instanton
equations are inherently nonlinear boundary value problem in the case that f is a nonlinear
function. Although in previous studies one was able to take the long time limit, in the case
of trajectories on a chaotic attractor this not possible. Typically one expects that chaotic
trajectories are not entire functions (in the complex variable sense) of time, meaning that
a rescaling of time would not ameliorate any problems. The extreme sensitivity to initial
conditions renders the last state of a time integration meaningless in the long time limit.
This manifests itself numerically as an ill-conditioning of the boundary value problem. For
longer times things get exponentially worse, eventually rendering any amount of careful
integration meaningless.

Another problem arose as well. The Lagrange multiplier λ became increasingly smaller
as time got larger to reach the same point in state space. The heuristic reason for this goes
as follows: In the long time limit there are many ways for a trajectory to get on one point
of the attractor to another. The extreme sensitivity to initial conditions allows one to jump

6The spatial correlation was chosen to be χn = kne
−k2n and the observable was chosen to be the value

of the velocity field at the origin. In Fourier space this means that λn = 1 for all conjugate momenta final
conditions.



Figure 5: A contour plot of the instanton trajectories for the KS equations. The horizontal
axis is the physical spatial coordinate, x, and the vertical axis is time. The color represents
the value of the instanton solution u. In both cases the observable at the final time is taken
to be ∂xxu(0, 0) but the initial condition for the left is starting from the origin and the
initial condition on the right starts from a point on the chaotic attractor.

onto a deterministic trajectory that gets to the endpoint just as easy. The longer the time
we wait the more candidates there are for reaching a given final state, all of which may look
completely different.

This same “problem” may also explain what leads to multiple solutions in the instanton
equations. One way of organizing the framework is by thinking of things in the context
of periodic orbit theory. For Lorenz the smallest period is of the order T ≈ 1.6 and, as
time increases, exponentially more periodic orbits come into existence. Each are embedded
within the attractor and offer a viable candidate to get from one point in state space to
another for a given λ. Hence as time grows we expect more and more solutions to the
instanton equations. Once one has multiple solutions pruning which ones matter and which
ones don’t becomes more of an art and increasingly less quantitative. The infimum becomes
essentially hopeless to calculate and unless one already knows the answer, it is relegated
merely to a matter of guesswork. There could always be some solution lurking out in
function space that is missed.

As we saw for the Lorenz example, three solutions to the instanton equations could be
calculated for the initial condition that started at the origin. No solutions seemed to sweep
itself up into the attractor, meaning that a lot of solutions could have been possibly missed.
This poses a danger when trying to calculate the probability distribution at the end since
the global infimum is the only critical point that matters in the ε→ 0 limit.

Normally the instanton equations are calculated in the long time limit. If the instanton
trajectory is simple then such a calculation can be rendered tractable. However, if the
evolution has, for example, oscillations towards a final state then such a limit may be



rendered computationally infeasible. There are perhaps ways to get around this difficulty
for particular systems, but these infinite horizon problems can be notoriously difficult to
deal with.

There is an additional numerical issue that arose in attempting to solve the instanton
equations. If the deterministic dynamics of the system allow for solution to blow up, so do
the instanton equations. Such a scenario occurs with the Rössler system. Even though the
Rössler system has a chaotic attractor (for the right choice of parameters) this does little
good if enough noise can knock a trajectory off of the attractor and into a “blow up region”
where all solutions quickly run away. This will manifest itself in the instanton equations by
choosing a large enough end condition (λ in this document). This is not necessarily a bad
feature if we would like to probe whether or not a system, i.e. Navier-Stokes, does exhibit
blow up.

With regards to the applicability of the instanton formulation to Navier-Stokes, it seems
likely that it may be able to find new fixed points as long as there are heteroclinic connec-
tions between the fixed points and the initial condition. If the initial condition is chosen
“poorly” it may result in one being on the chaotic attractor which would lead to hopeless
numerical difficulties. It seems, however, extremely unlikely that one could calculate the tail
ends of probability distributions in turbulence given this method. As we saw with Lorenz
and Kuramoto-Sivashinsky the tale end of the distribution is completely unrelated to the
instanton equations. As long as the deterministic dynamics is dominant, as it seems to be
the case in the turbulent regime, the role of noise is secondary and cannot be exploited in
the context of instantons.

It is possible that the inability of the instanton equations to capture the distribution
associated with the chaotic regime comes from an incompatibility between the T →∞ and
ε → 0 limits. If one solves the steady state Fokker-Plank equation what one is doing is
calculating T → ∞ first for a fixed ε. One can then study ε → 0 limit of the distribution.
It is this order that the limits must be taken in order to have a correspondence with the
chaotic attractor. With the instanton equations one focuses on the ε → 0 limit first and
then takes the T → ∞ limit afterwards. Hence it seems like the instanton equations are
fundamentally incompatible with calculating chaotic properties. This observation has been
pointed out before [2].

4 Summary and Conclusions

The instanton equations come from the minimization of an action occurring in the path
integral. Under a large deviation assumption they allow one to calculate the tail of proba-
bility distributions and even obtain the most likely trajectories that lead to such an extreme
state. Although instantons can say a lot about deviations away from determinism this does
little good if the deterministic part is the majority of the information as is the case with
chaos.

The instanton equations were implemented in systems with chaotic dynamics of which
this document focused on two: the Lorenz equations and Kuramoto-Sivashinsky equations.
The instanton equations where solved for various initial conditions and lengths of time and
the resulting probability densities were calculated. The instanton densities were found to
be completely unrelated to those of the deterministic dynamics and it seems to be the case



that they have to be unrelated.
However, it seems plausible for the instanton equations to find new coherent structures

that may be missed by conventional approaches. This was seen in the Lorenz equations
where an initial condition starting at the origin was able to evolve towards the unstable
fixed points. This leads to the belief that the instanton method may be a viable approach
to finding unstable fixed points of a dynamical system as long as there exists a heteroclinic
connection between them.
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